• Title/Summary/Keyword: hydrophobic matter

Search Result 73, Processing Time 0.02 seconds

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • Kim, Yong-Hwan;Lee, Seon-Hwa;Akio, Imai;Kazuo, Matsushige
    • Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

Effect of Dissolved Organic Matter and Cationic Surfactant on the Distribution of HOC in soil/water system (토양/수체 내 양이온 계면활성제와 용존유기물이 소수성유기화합물의 분포에 미치는 영향 연구)

  • 문정원;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.281-285
    • /
    • 2000
  • The effect of the presence of dissolved organic matters(DOM) on the binding of phenanthrene to cetylpyridinium chloride(CPC) coated sand was investigated. The distribution coefficient of phenanthrene increased with increase of sufactant coverage, and decreased with the presence of dissolved organic matters except for the 1.600mg/g coverage case. Both Aldrich humic acid and extracted dissolved organic matter showed the similar tendency. For the quantification of the overall distribution coefficient, this study presented mass distribution model and estimated the sorption equilibrium coefficients of hydrophobic organic compounds(HOCs) in multi system. The suggested model combined a series of sorption equilibrium relationships including the adsorption of DOMs on sorbents, the binding between HOCs and DOMs, and the sorption of HOCs on sorbents with or without DOMs.

  • PDF

Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process (활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성)

  • Hong, JiHea;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

Study on the Characteristics of Dissolved Organic Matters from Diverse Sources by XAD Resin Fractiontion and Microbial Incubation Experiments (XAD 수지분획과 생분해 실험에 의한 기원별 용존유기물질 특성 연구)

  • Oh, Seijin;Choi, ChanKyu;Hur, Jin;Jung, Myung-Sook;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.976-985
    • /
    • 2010
  • In this study, characteristics of dissolved organic matter (DOM) from Lake Paldang and seven other DOM sources (lake plankton, plants, soil, composite, treated sewage) were studied using XAD resin fractionation and 28-day microbial incubation experiment. Distribution patterns of DOM-fractions, which include hydrophilic acids (HiA), hydrophilic bases (HiB), hydrophilic neutrals (HiN), hydrophobic acids (HoA), hydrophobic neutrals (HoN) and the extent of DOM biodegradation (i.e., biodegradability) were different depending on the origins of the DOM samples. The DOM distribution pattern and the biodegradability were found to be effective for distinguishing the different DOM sources. The biodegradability (%) had negative correlations with the content (%) of hydrophobic fractions (Ho) and specific UV absorbance of DOM, which indicate that the Ho fractions contain more aromatic carbon structures and relatively stable during biodegradation, irrespective of the sources. To gain additional insight into the microbial transformation of the DOM, we also investigated the changes in the fraction's distribution for plankton, leaf litter and composite samples after the incubation. The results showed that biodegradation of hydrophilic fraction (Hi) causes an increase in the proportion of Ho (HoA, HoN), while biodegradation of HoA increases the HoN production.

Variation of Natural Organic Matter Characteristics through Water Treatment Processes (정수공정별 천연유기물질의 특성 변화)

  • Hwang, Jeong-Eun;Kang, Lim-Seok;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1253-1261
    • /
    • 2000
  • Natural organic matter (NOM) which occurs ubiquitously in both surface and ground waters, consists of both humic (i.e., humic and fulvic acids) and nonhumic components. NOM in general as well as certain constituents are problematic in water treatment. From a regulatory perspective, concerns focus upon the role of NOM constituents as disinfection byproduct (DBP) precursors. The fractionation of NOM through water treatment processes can provide insight into treatment process selection and applicability. Problematic NOM fractions can be targeted for removal or transformation. Significant source-related differences in NOM were observed among various source waters. This study found that bulk Dissolved Organic Carbon (DOC) concentration was hardly removed by oxidation process. Oxidation transformed high Molecular Weight (MW) hydrophobic fraction into low MW hydrophilic fraction. Ozone reduced s-pecific Ultraviolet Absorbance (SUVA) value more than chlorine. High MW hydrophobic fraction was effectively removed by coagulation process. About 50% of Trihalomethane Formation Potential (THMFP) was removed by coagulation process.

  • PDF

Effect of Organic Melecular Weight and Functional Group on Membrane Fouling (막오염에 미치는 유기물 분자량 분포특성 및 화학적 구조특성)

  • Jung, Chul-Woo;Son, Hee-Jong;Shin, Hyun-Sool;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.669-676
    • /
    • 2007
  • The raw water was fractionated into hydrophobic (HPO), transphilic (TPI), and hydrophilic portions (HPI) using XAD resins. The raw water DOC contains 39% of hydrophilics, 43% of hydrophobics, and 18% of transphilics. When fractionated NOM (natural organic matter) was passed through hydrophilic membrane with 100 kDa, hydrophobic portion (HPO) caused the most fouling and hydrophilic portion (HPI) caused the least fouling. This could be related to size and adsorption capability of organics. Small sized organics would pass through membrane pores, but large sized organics would be attracted to either membrane pores or surface, which led to the fouling. An effect of membrane pore size on membrane fouling is related to the availability of organics at membrane pores. As the pore size became larger, the more organics were transported into the membrane pore. Some organics caused pore blocking, and others caused pore adsorption, which resulted in membrane fouling. Membrane material is also important for membrane fouling. More fouling occurred at hydrophobic membrane than hydrophilic membrane regardless of its pore size. Hydrophobic interaction caused more fouling at hydrophobic membrane.

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.

A Study on Characteristics of Natural Organic Matter using XAD and FTIR in Yeongsan River System (XAD 및 FT-IR을 이용한 영산강수계 광주시 유역 자연유기물질의 분포특성 연구)

  • Lee, Dong-Jin;Chon, Kang-Min;Kim, Sang-Don;Jung, Soo-Jung;Lee, Kyung-Hee;Hwang, Tae-Hee;Lim, Byung-Jin;Cho, Jae-Weon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.358-363
    • /
    • 2011
  • This study investigated the characteristics of natural organic matter(NOM) with tXAD resin and FT-IR in the Yeongsan river system of Gwangju region. NOM fractionation by XAD 8/4 resins was used to classify hydrophobic and hydrophilic substances. FTIR was applied to classify functional groups in the structure of NOM. In the XAD investigation, most of the four site-samples were mainly hydrophilic substances. In March, hydrophobic substances were dominant in the Gwangju 1 site (GJ-1), while hydrophilic substances were dominant for the other sites. In May, samples of all four sites were hydrophilic with a vigorous activity of microorganism due to increasing temperatures. The October results were very similar with those from March. In the FT-IR investigation, most of the broad and large peaks were assigned to the aliphatic group, particularly the OH group, C-H, $C-H_2$, $C-H_3$, and C-O alcohol group. All were related to hydrophilic substances. Other peaks showed the aromatic group, particularly the C=O (Ketone) Group. As a result, there is an identification of NOM in the Yeongsan river system composing mainly of hydrophilic substances and functional groups (OH, C-H etc.) of the aliphatic compound.

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan;Lee, Shun-Hwa;Kim, Jung-Ho;Park, Jong-Woong;Choi, Kwang-Soon
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.181-193
    • /
    • 2006
  • The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.