• Title/Summary/Keyword: hydrophillicity

Search Result 5, Processing Time 0.023 seconds

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Durable Antistatic and Hydrophillic Finishing of Nylon Using Ethoxylated Hexylaminoanthraquinones (Ethoxylated Hexylaminoanthraquinone에 의한 나일론의 내구성 대전방지가공 및 친수화 가공)

  • Kim Myung-Soon;Park Hyun-Min;Yoon Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.26-30
    • /
    • 2005
  • Nylon fabric is widely used in stocking, inner wear, sports wear, and casual wear, but has a defect of easy electric static charging. Accordingly there has been great demand for the hydrophillic finishing technology that could be applied to nylon fiber more easily and efficiently. In this study, ethoxylated hexylantinoanthraquinones were exhausted onto nylon from aqueous bath, and hydrophillicity of the nylon was discussed. In the treatment of nylon fabrics with ethoxylated hexylaminoanthraquinones, they were successfully exhausted onto nylon fabric without any aid of chemical auxiliary. The hydrophilicity of the dyed nylon fabrics were increased with the length of ethoxylate chain. The durability of antistatic and hydrophilic characteristics was good enough as to maintain the initial properties even after 30 repeated launderings.

A Study on Polyester Fabric treated with Quarternary Ammonium Salt and Alkali (사급암모늄염/수산화나트륨용액에서 폴리에스테르 직물의 알칼리처리에 관한 연구)

  • 류효선
    • Journal of the Korean Home Economics Association
    • /
    • v.25 no.4
    • /
    • pp.9-18
    • /
    • 1987
  • This study is conducted to investigate the influence of addition of quarternary ammonium salt(cetyl trimethyl ammonium bromide: CTAB) when polyester(PET) fabric is treated with sodium hydroxide(NaOH), depending on experimental variables such as CTAB concentration, NaOH concentration, time & temperature, and the change in physical & chemical properties of alkaline-hydrolyzed PET fabrics depending on their weight loss. The results are as follows: 1. By adding CTAB in aqueous NaOH, the weight loss of PET fabric is increased remarkably and until the concentration of CTAB is reached at its cmc, and the higher the concentration of CTAB are, the more weight loss on PET fibrics are. 2. The addition of CTAB in aqueous NaOH is most effective at lower NaON concentration(2%) among various NaOH concentration, on increasing the amount of weight loss, while there are almost similar results through various treatment time and temperature. 3. As the amount of weight of weight loss on PET fabric is increased, the increase of void space in the PET yarn, of softness & dyeability of PET fabric and the decrease of tensile strength are found. On the other hand, the moisture regain shows a little increase by alkaline-hydrolysis on PET fabric while vertical absorption test & water retention value are not sufficiently sensitive to distinguish between the hydrophillicity of untreated and treated PET fabric. The shrinkage of PET fabric is induced by swelling in hot aqueous NaOH regardless of NaOH concentration & addition of CTAB.

  • PDF

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Synthesis of Biodegradable Aliphatic Polyester with Amino Group in the Side Chain (곁사슬에 아미노기를 도입한 생분해성 지방족 폴리에스테르의 합성)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.381-385
    • /
    • 2010
  • Aiphatic diester monomer, 3-[(benzyloxycarbonylamino)butyl]-1,4-dioxane-2,5-dione (BABD), was synthesized with the N-$\varepsilon$-benzyloxy-carbonyl-L-lysine as starting material. This monomer was synthesized to add the functionality to poly(lactic acid)s. BABD unit was successfully incorporated into the PLLA chain which was confirmed by $^1H$ NMR. The copolymer composition could be controlled by the feed ratios of monomer. The $M_n$ of this resultant polymer is expected to reach high molecular weight after the purification of monomer and optimization of polymerization time, though the polymer showed relatively low degree of polymerization ($M_n$=3300). The copolymer is expected to possess the enhanced hydrophilicity and the possibility of chemical modification on amino group.