• 제목/요약/키워드: hydrophilic surface

검색결과 701건 처리시간 0.027초

친수성 및 소수성 마이크로 노즐 내 유동 ${\mu}-PIV$ 연구 (${\mu}-PIV$ Visualization of Flow in Hydrophilic and Hydrophobic Micro-nozzle)

  • 변도영;김지훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.15-18
    • /
    • 2006
  • 최근 미소기전시스템(MEMS)를 개발함에 있어 마이크로 크기의 유동가시화는 중요한 문제이다. 특히 유체와 고체표면의 상호작용에 있어 표면의 친수성과 소수성의 성질은 미소유체를 조절 가능케 하는 핵심적인 역할이다. 본 연구에서는 마이크로 채널 내 표면을 개질하여 친수성 및 소수성의 벽면 경계조건 습윤도를 측정하였고, 또한 micro-PIV를 이용하여 벽면 근처에서의 속도 분포를 분석하였다.

  • PDF

Tensiometric법을 이용한 친수하 PET 섬유의 표면특성 분석 (The Analysis of Surface Characteristics of the Hydrophilic Chemicals Treated PET Fibers using Tensiometric Methods)

  • 정혜원
    • 한국의류학회지
    • /
    • 제15권4호
    • /
    • pp.431-435
    • /
    • 1991
  • The dispersion and Poiar force components of the surface free energy of PET fibers untreated and treated with hydrophilic chemicals, such as nonionic-soil release polymer (SRP), anionic, nonionic and hydrophilic silicone, were determined using harmonic-mean and geometric-mean methods. Contact angles of water and methylene iodide on the fibers were determined from the adhesion tensions using tensiometric method. Fibers treated with hydrophilic chemicals have the increased polar force component and the decreased dispersion force component. The adhesion tensions of triolein for the hydrophilic treated fibers were smaller than that for untreated fiber.

  • PDF

막증류 담수화를 위한 친수성/소수성 이중 표면 코팅 (Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination)

  • 김혜원;이승헌;정성필;변지혜
    • 한국물환경학회지
    • /
    • 제38권3호
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

홀 패턴 텍스쳐 표면에서 충돌하는 단일 액적의 젖음 특성 (Wetting Characteristic of Single Droplet Impinging on Hole-Patterned Texture Surfaces)

  • 문주현;이상민;정정열;이성혁
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.181-186
    • /
    • 2015
  • This study presents the dynamic wetting characteristics of an impact droplet on hole-patterned textured surfaces. The flat surfaces were manufactured by a drilling machine to generate the micro-order holes, leading to make the surface hydrophobic. Other flat surfaces were fabricated by the anodizing technique to make hydrophilic texture surfaces with a nanometer order. For hydrophilic and hydrophobic textured surfaces with similar texture area fractions, the impinging droplet experiments were conducted and compared with flat surface cases. As results, an anodized textured surface decreases apparent equilibrium contact angle and increases contact diameters, because of increase in contact area and surface energy. This is attributed to more penetration inside holes from larger capillary pressure on nanometer-order holes. On the other hand, temporal evolution of the contact diameter is smaller for the hydrophobic textured surface from less penetration on the micro-order holes.

Ultrafiltration of Oily Wastewater with Surface Pretreated Membranes

  • Kim, Kyu-Jin;Fane, Antony G.
    • Korean Membrane Journal
    • /
    • 제1권1호
    • /
    • pp.43-49
    • /
    • 1999
  • Separation of soluble oil was investigated during filtration of cutting oil emulsion using various commercial ultrafiltration membranes. The surface properties of membranes used were hydrophilic hydrophobic and modified surfaces by various surfactant pretreatments. Conditions varied include stirring speed transmeembrane pressure membrane type and surfactant type for pretreatment. The results give some indication of mechanisms occurring at the membrane surface. Surfactant pretreatments significantly improved water flux and UF flux of hydrophilic regenerated cellulose(up to 2.4x for YM100) and hydrophobic polysulfone (up to 2.2x for PTHK) membranes depending on surfactant type and operating conditions. The UF flux enhancement was attributed to membrane swelling and reduction of interfacial surface tension between oil droplets and membrane surface. unexpectedly the hydrophilic membranes revealed greater flux enhancement than the hydrophobic membranes. The results also showed a greater improvement in UF flux at lower operating pressure.

  • PDF

Reactive Magnetron Sputtering법으로 제조된 $TiO_2$의 친수성/소수성 변환 특성 (Hydrophilic/Hydrophobic Conversion of $TiO_2$ Films by Reactive Magnetron Sputtering)

  • 이영철;박용환;안재환;고경현
    • 한국세라믹학회지
    • /
    • 제36권11호
    • /
    • pp.1211-1216
    • /
    • 1999
  • TiO2 thin films were prepared by reactive magnetron sputtering on glass substrate and subjected into investigation about their hydrophilic properties. Varing Ar/O2 ration and post annealing at 50$0^{\circ}C$ for 12h anatase and rutile phases of TiO2 films were obtained. Hydrophilic properties were evaluated by determination of contact angle of water droplet on TiO2 surface. On as-annealed TiO2 films water droplet spreaded widely with ~0$^{\circ}$contact angle. Sonication(60 Hz, 28kHz 40kHz) and following dark room treatments turned these hydrophilic TiO2 films into hydrophobic state. All of hydrophobic films were converted recersibly into their original state after UV illumination. Hydrophobic states of anatase films were saturated after sonication and remain same during dark room treatment. But it was found that the conversion into hydrophobic state of rutile films progressed. further after sonication. Therefore it was concluded that Ti3+/Ti+4 ratio is the key to determine hydrophilicity of TiO2 surface so that different surface structure of polymorphs could lead to unique characteristics.

  • PDF

확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구 (Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface)

  • 이민수;장영수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

실리카 에어로겔의 표면 개질 (Surface Modification of Silica Aerogels)

  • 현상훈;이찬호;김동준
    • 한국세라믹학회지
    • /
    • 제33권12호
    • /
    • pp.1319-1324
    • /
    • 1996
  • Silica aerogels were synthesis by the sol-gel-supercritical drying process using isopropanol as a solvent. Effets of the heat-treatment and the surface modification through propoxylation on the structural reinforcement as well as the surface hydrophobic/hydrophilic characteristics of aerogels were investigated. Silica aerogels synthesized by supercritical drying were hydrophobic but aerogels heat-treated above 20$0^{\circ}C$ were transformed to be hydrophilic. In particular it was found that the skeletal structure of aerogels heat-treated at 50$0^{\circ}C$ was strong enough not to crack after adsorbing a large amount of water vapor. Hydrophilic aerogels modified by propoxylation at 28$0^{\circ}C$ for 20 h were reversed to the hydrophobic form. Transition between hydrophobicity and hydrophilicity was reversible. The hydrophobicvity and the hydrophilicity of silica aerogels were attributed to the Si-Oh bond and the nonpolar C-H bond groups of orgainc species respectively.

  • PDF

친수성 마이크로 기둥 구조 표면에서의 표면 지형적 특성에 따른 퍼짐성 현상에 대한 실험적 연구 (Experimental study of spreading phenomena on hydrophilic micro-textured surfaces depending on surface geometrical features)

  • 장문영;박세현;유동인
    • 한국가시화정보학회지
    • /
    • 제16권3호
    • /
    • pp.35-39
    • /
    • 2018
  • In multiphase systems, surface wettability is one of dominant design parameters to enhance system performance. Since surface wettability can be maximized and minimized with micro-textured surfaces, therefore micro-textured surfaces are widely countered in various research and engineering fields. In this study, for better understanding of micrometer scaled surface wettability, spreading phenomena is experimentally investigated on the hydrophilic micro-textured surfaces. By photolithography and conventional dry etching method, there are prepared the surfaces with uniformly arrayed micro-pillars. The interfacial motions of a water droplet on the test sections are visualized by high speed camera in top view. On the basis of visualization data, it is analyzed the relation between dynamic coefficient and geometrical features on micro-textured surfaces.

플라즈마 처리한 고분자 복합재료의 표면특성변화 (Surface static properties in polymer hybrid material after plasma treatment)

  • 박종관
    • 전자공학회논문지 IE
    • /
    • 제44권3호
    • /
    • pp.6-11
    • /
    • 2007
  • 본 연구는 플라즈마 처리한 고분자 복합재료 표면의 접촉각, X-선광전자분광법(XPS) 및 코로나 대전에 의한 표면 정전특성을 분석하여 발생된 화학적 변화와 정전적 특성 변화를 고찰하여 열화 메커니즘을 도출하였다. 플라즈마 처리된 시료의 접촉각 및 표면전위는 표면에 카르복실기 라디칼을 포함하는 다량의 측쇄화가 집중적으로 발생되어 처리시간에 따라 급격한 친수화가 진행되었다. 플라즈마 처리로 인한 화학적 변화에서 표면에 carboxyl 라디칼이 주로 형성되면서 급격히 표면 친수화로 변화하였다. 정전변화를 분석한 전위감쇠 결과에서 미처리 시료는 부극성 표면을 나타내었으나, 친수화 표면은 carboxyl 라디칼(-COO*)을 포함하는 정극성 라디칼로 인해 정극성 표면으로 변화하여 부극성 전하가 빠르게 감소하였다.