• Title/Summary/Keyword: hydrophilic copolymer

Search Result 85, Processing Time 0.02 seconds

Swelling Controlled Drug Release from Acrylamide-Styrene Copolymer Hydrogels (Acrylamide-Styrene Copolymer 하이드로겔로부터의 수팽윤 속도조절에 의한 약물 방출)

  • Kim, Min-Kyoung;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.173-178
    • /
    • 1989
  • Drug release rates from copolymer hydrogels were controlled by their hydrophilic-hydrophobic balances. As a model copolymer hydrogel, poly(acrylamide-co-styrene) was synthesized at different monomer composition. Release mechanisms of propranolol-HCI from the copolymer matrices were investisated. Swelling rates of the copolymer hydrogels retarded as their hydrophobicity increased. Swelling kinetics of the copolymer hydrogels regulated drug release rates via polymer relaxation controlled release mechanisms. Zero order drug release could thus be achieved within certain periods.

  • PDF

Comparison to Gases Response Characteristics of Maleate and Itaconate Copolymer LB Films (말레에이트계.이타코네이트계 공중합체 LB막의 가스 반응 특성 비교)

  • 이을식;김도균;최용성;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.461-464
    • /
    • 1997
  • In this paper, the response characteristics for organic vapors has been studied using both itaconate copolymer and maleate copolymer, which have different hydrophilic group and same hydrophilic group. The conductivity of sensitive LB films was decreased in the range of 18 layers and maintained over 30 layers, which can describe the behaviors of urganic vapors such as penetration and surface absorption. It was thought that the organic vapors was penetrated into sensitive 13 films below 18 layer and the electrode was covered with sensitive LB film over 30 layers.

  • PDF

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

  • Chang, Jeong-Ho;Kim, Kyung-Ja;Shin, Young-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 ${\AA}$ with the increase of hydrophobic chain lengths and up to 660 $m^2$/g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state $^{13}C\;and\;^{29}Si$ NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates.

Synthesis and Microphase Separation of Biodegradable Poly($\varepsilon$-caprolactone)-Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Multiblock Copolymer Films

  • You, Jae-Ho;Choi, Sung-Wook;Kim, Jung-Hyun;Kwak, Young-Tae
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.609-613
    • /
    • 2008
  • Poly($\varepsilon$-caprolactone)-poly(ethylene glycol)-poly($\varepsilon$-caprolactone) (PCL-PEG-PCL) multiblock copolymers at various hydrophobic-hydrophilic ratios were successfully synthesized by the chain extension of triblock copolymers through isocyanate (hexamethylene diisocyanate). Biodegradable films were prepared from the resulting multiblock copolymers using the casting method. The mechanical properties of the films were improved by chain extension of the triblock copolymers, whereas the films prepared by the triblock copolymers were weak and brittle. Atomic force microscopy (AFM) of the multiblock copolymer film showed that the hydrophilic PEG had segregated on the film surface. This is consistent with the observed contact angle of the films.

The Effect of Aggregation States on ionic Conductivity of Stolid Polymer Electrolytes Based on Waterborne Polyurethane

  • Bae, Sang-Sik;Jo, Nam-Ju
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.332-338
    • /
    • 2001
  • Waterborne polyurethane as a new polymer electrolyte was synthesized by using relatively hydrophilic polyols. The morphology of polyurethane was changed as it was dispersed in water. In contrast to polyurethane ionomer, waterborne polyurethane did not form an ionic cluster but produced a binary system composed of hydrophilic and hydrophobic groups. In the colloidal system, the former and the latter existed at outward and inward, respectively. Waterborne polyurethane was prepared from poly(ethylene glycol) (PEG) /poly(propylene glycol) (PPG) copolymer, 4,4'-diphenylmethane diisocyanate(MDI), ethylene diamine as a chain extender, and three ionization agents, 1,3-propane sultone, sodium hydride and lithium hydroxide. PEG/PPG copolymer was used for suppressing the crystallinity of PEG and N-H bond was ionized for increasing the electrochemical stability of polyurethane. Low molecular weight poly(ethylene glycol) and poly(ethylene glycol dimethyl ether) (PEGDME) were used as plasticizers. DSC, FT-IR and $^1$H-NMR of the waterborne polyurethane were measured. Also, the ionic conductivity of solid polymer electrolytes based on waterborne polyurethane and various concentrations of low molecular weight poly(ethylene glycol) or PEGDME were measured by AC impedance.

  • PDF

Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC (서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석)

  • Yuk, Jinok;Lee, Sojeong;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • Multi-block sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized via nucleophilic aromatic substitution reaction for proton exchange membrane fuel cell application. After synthesizing the hydrophilic and hydrophobic precursor oligomers having different end-groups (F-terminated or OH-terminated), the effect of end group on the molecular weight was investigated. Hydrophilic oligomers with hydroquinone showed better performance as fuel cell membranes. SPAES membranes showed comparable proton conductivity to that of Nafion at $80^{\circ}C$ and above 70% RH. In particular, SPAES 9 with hydroquinone showed higher proton conductivity than SPAES 10 in the whole RH range studied. Increased local concentration of sulfonic acids within hydrophilic block might develop the hydrophilic-hydrophobic phase separation in the block copolymers.

The Vertical and Lateral Ordering of PDMA-b-PS Block Copolymer Thin film via Control of Relative Humidity (습도의 영향에 따른 PDMA-b-PS 친수성 블록공중합체 박막의 패턴 조절)

  • Jung, Hyun-Jung;Kim, Tae-Joon;Bang, Joon-A
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.352-356
    • /
    • 2011
  • In this paper, we prepared new type of hydrophilic block copolymers that exhibit the long-ranged lateral ordering in thin film. It was previously demonstrated that poly(ethyleneoxide-b-styrene) and poly(ethyleneoxide-b-metharylate-b-styrene) block copolymer thin films have a high degree of lateral ordering after solvent annealing process. In these cases, the relative humidity plays an important role in long-ranged lateral ordering. However, the origin of the humidity effect on the orders of these hydrophilic block copolymers is not fully understood. To investigate the effect of the humidity further, we prepared other hydrophilic poly(N,N-dimethylacrylamide-b-styrene)(PDMA-b-PS) block copolymers via RAFT polymerization. As with PEO-containing block copolymers, PDMA-b-PS block copolymers exhibit the long-ranged lateral ordering after solvent annealing process.

Property Evaluation of Breathable Blend Fabric of MPCE Copolymer and Wet Coagulated Polyurethane (MPCE copolymer와 습식 폴리우레탄의 블렌드에 의한 투습방수 나일론 직물의 제반 물성변화에 관한 연구)

  • Yi, Jong-Woo;Chae, Ei-Jung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.322-330
    • /
    • 2014
  • The phospholipid-based MPCE(2-Methacryloxyethyl Phosphoryl Chlorine) copolymer was mixed with wet polyurethane for coating of nylon fabrics. The substitution rate of water in coagulation bath with DMF was changed under control of the size of formed hydrophilic microporous cell enable to manufacture excellent breathable, anti-bacterial and moisture control fabrics. Biocompatible property, vapor permeability, hydrostatic pressure, moisture management and anti-bacterial property were investigated for treated nylon fabrics. In result, increased moisture transmission rates, decreased water resistance and outstanding moisture control property could be confirmed by enhanced hydrophilicity of wet-coated nylon fabric with MPCE copolymer.