• 제목/요약/키워드: hydrolyzed protein

검색결과 324건 처리시간 0.022초

Characteristics of a Black Soybean (Glycine max L. Merrill) Protein Isolate Partially Hydrolyzed by Alcalase

  • Yoon, Ji-Ho;Jung, Dong-Chae;Lee, Eun-Hye;Kang, Yoon-Seok;Lee, Sung-Yong;Park, Sae-Rom;Yeom, Hye-Jung;Ha, Mi-Sun;Park, Sang-Kyu;Lee, Yu-Si;Ha, Sang-Do;Kim, Gun-Hee;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.488-493
    • /
    • 2009
  • A protein isolate was prepared from black soybean (Glycine max L. Merrill) that possessed higher antioxidant activity than ordinary white soy protein isolates. The isolate was partially hydrolyzed by alcalase to reduce the allergenicity of black soybean. Alcalase remarkably reduced the molecular mass of the major soybean allergens that have molecular weights of 53, 38, and 24 kDa. Hydrolytic breakdown occurred more effectively in Gly m Bd 30K than in Gly m Bd 60K or Gly m Bd 28K. Alcalase hydrolysis increased the solubility and hydrophobicity of the black soybean protein isolate. The foaming activity and stability of black soybean proteins were highly increased by the partial hydrolysis.

Peptide Analysis and the Bioactivity of Whey Protein Hydrolysates from Cheese Whey with Several Enzymes

  • Jeewanthi, Renda Kankanamge Chaturika;Kim, Myeong Hee;Lee, Na-Kyoung;Yoon, Yoh Chang;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.62-70
    • /
    • 2017
  • The aim of this study was identifying a suitable food grade enzymes to hydrolyze whey protein concentrates (WPCs), to give the highest bioactivity. WPCs from ultrafiltration retentate were adjusted to 35% protein (WPC-35) and hydrolyzed by enzymes, alcalase, ${\alpha}-chymotrypsin$, pepsin, protease M, protease S, and trypsin at different hydrolysis times (0, 0.5, 1, 2, 3, 4, and 5 h). These 36 types of hydrolysates were analyzed for their prominent peptides ${\beta}-lactoglobulin$ (${\beta}-Lg$) and ${\alpha}-lactalbumin$ (${\alpha}-La$), to identify the proteolytic activity of each enzyme. Protease S showed the highest proteolytic activity and angiotensin converting enzyme inhibitory activity of IC50, 0.099 mg/mL (91.55%) while trypsin showed the weakest effect. Antihypertensive and antioxidative peptides associated with ${\beta}-Lg$ hydrolysates were identified in WPC-35 hydrolysates (WPH-35) that hydrolyzed by the enzymes, trypsin and protease S. WPH-35 treated with protease S in 0.5 h, responded positively to usage as a bioactive component in different applications of pharmaceutical or related industries.

효소처리한 번데기 농축단백질의 기능적 특성 (Functional Properties of Silkworm Larvae Protein Concentrate After Enzyme Treatments)

  • 전정례;박정륭
    • 한국식품영양과학회지
    • /
    • 제21권6호
    • /
    • pp.706-711
    • /
    • 1992
  • Papain과 pepsin에 의한 부분 가수분해가 번데기 농축단백질의 기능적 특성에 미치는 영향을 검토하였다. TCA 가용성 질소량을 측정하여 얻은 가수분해 정도는 papain으로 10분과 60분간 처리한 결과 각각 10.23%와 19.17% 였으며 pepsin으로 10분과 60분간 처리한 경우는 각각 15.41%와 21.41%로 나타났다. 효소처리한 번데기 농축단백질의 질소 용해도는 실험한 pH 전범위에서 증가하였으며 특히 papain과 pepsin 모두 60분 처리한것이 10분간 처리한것 보다 높게 나타났다. 0.03M $CaCl_2$를 첨가한 결과 전반적으로 질소 용해도가 증가하는 경향을 나타내었다. 번데기 농축단백질의 겉보기 밀도는 papain으로 처리시 차이가 나타나지 않았으며 pepsin의 겨우는 다소 증가하는 경향이었다. 수분 흡수력의 경우 pepsin으로 10분간처리한것 이외에는 큰차이를 나타내지 않았으나 지방흡수력은 papain과 pepsin으로 부분 가수분해한 결과 전반적으로 증가하였다.

  • PDF

EFFECTS OF FRUCTO-OLIGOSACCHARIDES ON MILK-YIELD AND MILK-COMPONENTS OF DAIRY COWS

  • Kobayashi, S.;Eida, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제3권1호
    • /
    • pp.21-25
    • /
    • 1990
  • Fructo-oligosaccharides are found in many plants, such as onion, burdock and wheat. They are not well hydrolyzed by digestive enzymes in animals, but are peculiarly assimilated by Bifidobacterium and some useful bacteria. In our previous experiment (Kobayashi et al., 1987) it was suggested that they were effective in decreasing energy loss in the metabolism of dairy calves. In the present study, the effects of fructo-oligosaccharides on body weight, milk-yield and milk-components (fat, protein and solids-not-fat) were investigated in dairy cows. Lactating cows were fed a standard diet containing fructoligo saccharides at 18.70g, 9.35g and 0.0g (control) per 100kg body weight, day for three weeks. Neither treatments significantly affected any of the parameters examined. The fructo-oligosaccharides were assumed to be hydrolyzed by rumen microorganisms and hardly to affect the bacterium florae in the intestines of the lactating cows.

단백질 가수분해물을 이용한 식품 내 소금 저감화 (Salt reduction in foods using protein hydrolysates)

  • 신정규
    • 식품과학과 산업
    • /
    • 제51권4호
    • /
    • pp.313-324
    • /
    • 2018
  • As excessive intake of salt is regarded as a reason for health problems, the tendency of people to attempt to reduce intake of salt in their everyday lives is on the rise. In Korea, where many people have a higher intake of salt compared to those in other countries, there have been diverse efforts to improve on this eating habit. Protein hydrolysates are chemically, physically hydrolyzed protein that have been widely utilized as a material for not only regular food but health functional food due to have diverse biological effects such as anti-oxidation, anti-inflammation, prevention of diabetes, and regulation of blood pressure. Various amino acids such as glutamic acid, arginine and arginine dipeptides, which exist in the components of protein hydrolysates, have also been recently recognized as being helpful in decreasing the use of salt in foods as they can greatly enhance salty taste when used concurrently with salt due to having both salty and palatable flavors. In the case of protein hydrolysates that decompose soy protein or fish protein such as anchovy, they could reduce consumption of salt by as much as 50% without affecting people's food preferences when applied to food as they boost salty taste by approximately 10% to 70%. Although there are only a few studies on protein hydrolysates as a salty taste enhancer or salt substitute, the results of several studies are indicative of the potential of protein hydrolysates as a salty taste enhancing ingredient.

Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides

  • Choi, Suk-Ho;Lee, Seung-Bae
    • 대한약침학회지
    • /
    • 제16권2호
    • /
    • pp.46-54
    • /
    • 2013
  • Objective: This study was undertaken to isolate a fibrin(ogen)olytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate the enzymatic characteristics and hemorrhagic activity of the isolated enzyme as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were determined by using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrin(ogen)olytic enzyme with the molecular weight of 27 kDa (FE-27kDa) isolated from G. b. siniticus venom consisted of two heterogenous disulfide bond-linked polypeptides with the molecular weights of 15 kDa and 18 kDa. When more than $20{\mu}g$ of FE-27kDa was applied on the fibrin plate, fibrinolysis zone was formed as indicating its fibrinolytic activity. The fibrinolytic activity was inhibited completely by phenylmethanesulfonylfluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA) and partially by thiothreitol and cysteine. Metal ions such as $Hg^{2+}$ and $Fe^{2+}$ inhibited the fibrinolytic activity completely, but $Mn^{2+}$ did not. FE-27kDa preferentially hydrolyzed ${\alpha}$-chain of fibrinogen and slowly hydrolyzed ${\beta}$-chain, but did not hydrolyze ${\gamma}$-chain. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into polypeptides with molecular weights of more than 45 kDa. A dosage of more than $10{\mu}g$ of FE-27kDa per mouse was required to induce hemorrhage beneath the skin. Conclusion: FE-27kDa was a serine proteinase consisting of two heterogeneous polypeptides, hydrolyzed fibrin, fibrinogen, and gelatin, and caused hemorrhage beneath the skin of mouse. This study suggests that the potential of FE-27kDa as pharmacopuncture agent should be limited due to low fibrinolytic activity and a possible side effect of hemorrhage.

Effects of ${\alpha}$-Chymotrypsin Modification on the Functional Properties of Soy Protein Isolates

  • Ahn Tae-Hyun;Lee Sook-Young
    • 한국작물학회지
    • /
    • 제51권2호
    • /
    • pp.148-153
    • /
    • 2006
  • Effects of ${\alpha}$-chymotrypsin modification on degree of hydrolysis (DH), solubility, emulsifying capacity and thermal aggregation of laboratory-purified soy protein isolate (SPI) using a lipoxygenase-defected soybean (Jinpum-kong) and commercial soy protein isolate (Supro 500E) were compared. SPIs were hydrolyzed by ${\alpha}$-chymotrypsin at pH 7.8 and $37^{\circ}C$ for 30 min. DHs of Supro 500E and Jinpum-kong SPI were increased by ${\alpha}$-chymotrypsin modification, and DH of Supro 500E was higher than that of Jinpum-kong SPI. DH of ${\alpha}$-chymotrypsin treated Jinpum-kong SPI was similar with untreated Supro 500E and DH of treated Supro 500E was the highest. Solubility, emulsifying capacity and thermal aggregation of SPIs were increased by ${\alpha}$-chymotrypsin modification, and these changes were highly related to changes in DH. Functional properties of Supro 500E were higher than Jinpum-kong SPI in both of untreated and ${\alpha}$-chymotrypsin treated SPIs.

메주 단백질 가수분해 효소 처리가 탈지 우유 단백질의 응고물 형성 및 소화율에 미치는 영향 (Modifications of Skim Milk Protein by Meju Protease and Its Effect on Acid Clotting and Digestibility)

  • 이진실
    • Journal of Nutrition and Health
    • /
    • 제26권8호
    • /
    • pp.998-1005
    • /
    • 1993
  • This study was attempted to investigate the effects of enzymatic modification of milk protein with Meju protease on its acid clotting and digestibility. The proteases used in this study were isolated from Meju(fermented soybeans) and had specific acticity of 250 units/mg protein at pH 7.0. These proteases were found to be at least 3 different isoenzymes of different pH optima(pH 4.0, 6.0, 10.0). The optimum temperature was 5$0^{\circ}C$. Hydrolyzed skim milk showed 30.5% degree of hydrolysis for 1 hr. and 36.4% degree of hydrolysis for 3.5 hrs. of protease treatment at pH 7.0. Upon acidification to pH 4.0, skim milk produced large and dense coagulum, but the coagulum was getting smaller by protease treatment. Generally, digestability of skim milk at pH 4.0 was lower than pH 2.0. At pH 4.0, native skim milk and control group had problem with hydrolysis of skim milk protein. Among protease treated groups, 1 hour treated skim milk was most effectively hyrolyzed at pH 4.0.

  • PDF

레시틴 추출 잔사인 계란노른자의 효소적 단백질 가순분해물의 항산화 특성 (Antioxidative Effect of Enzymatic Protein Hydrolysate from Lecithin-Free Egg Yolk)

  • 박표잠;정원교;최영일;김세권
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.131-139
    • /
    • 2000
  • Lecithin-free egg yolk protein (EYP), the by-product of lecithin extraction from egg yolk, which is denatured with an organic solvent, would normally be discarded. In this study, the denatured protein was renatured with alkali, and hydrolyzed with Alcalase in order to utilize by-product. The hydrolysate was separated through a series of ultrafiltration membranes with molecular weight cut-off (MWOO) of 10, 5 and 1 kDa, and the antioxidative activities of the hydrolysates was investigated. The 5K hydrolysate, permeate from 5 kDa membrane, showed stronger antioxidative activity than 10 K and 1 K hydrolysate which were permeated from 10 kDa and 1 kDa membrane, in a linoleic acid autoxidation system. In addition, the optimum concentration of antioxidative activity for 5 K hydrolysate was 1%, and the activity was about 37% higher as compared with α-tocopherol. The synergistic effect was also increased by using the hydrolysates with α-tocopherol.

  • PDF

단백질의 메탈 킬레이션 화합물 제조 및 확인에 관한 연구 (The study for the synthesis and analysis of metal chelated protein)

  • 김성호;남해선;이윤진
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1273-1278
    • /
    • 2007
  • 생체내에 존재하는 효소 등의 단백질은 그 골격을 이루는 아미노산 이외에 다양한 형태로 금속 원소들과 킬레이션을 이루고, 고유한 생리활성을 나타낸다. 단백질과 금속과의 킬레이션을 체계적으로 연구하기 위하여 가수분해하여 얻은 펩타이드와 Zn(II) 이온을 반응시키고, MALDI-TOF 질량분석기로 킬레이트 반응전 후의 펩타이드의 분자량을 측정하여 킬레이트 반응 생성물을 확인하는 분석법을 개발하고자 한다.

  • PDF