• Title/Summary/Keyword: hydrolysis time

Search Result 665, Processing Time 0.03 seconds

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.

Proteolytic Conditions for the Hydrolysate of Flounder Skin Gelatin (효소에 의한 가자미피 젤라틴 가수분해물의 제조 조건)

  • 강태중;양현필;김세권;송대진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.398-406
    • /
    • 1992
  • In order to develop a new flavourant using the fish skin gelatin, the proteolytic renditions for the gelatin hydrolysate of the alkali (B-type) and Alcalase (E-type) pretreated flounder (Limanda aspera) skin gelatin were investigated, and some physical properties, molecular weight and amino acid compositions of the hydrolysates were, also, compared with each other. The proteolytic conditions of the gelatins (B-type and E-type) by trypsin were as follows : reaction temperature, 55$^{\circ}C$ : pH, 9.0 : enzyme concentration, 0.1% : re-action time, 4hrs for B-type and 1 hr for E-type. The degrees of hydrolysis of the B-type and E-type gelatin un-der the renditions stated above were 63% and 82%, respectively. The rnajor molecular weights of the hydrolysates were 15,000 dalton for B-type and 12,400 dalton for E-type. Among the amino acids in the hydrolysates, glycine, alanine, proline, hydroxyproline and serine having a sweet taste were responsible for 57% of the total amino acid. But valine, leucine, phenylalanine, tyrosine, methionine, arginine and histidine having a bitter taste were only 18%.

  • PDF

Chemical transformation and target preparation of saponins in stems and leaves of Panax notoginseng

  • Wang, Ru-Feng;Li, Juan;Hu, Hai-Jun;Li, Jia;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.270-276
    • /
    • 2018
  • Background: Notoginsenoside Ft1 is a promising potential candidate for cardiovascular and cancer disease therapy owing to its positive pharmacological activities. However, the yield of Ft1 is ultralow utilizing reported methods. Herein, an acid hydrolyzing strategy was implemented in the acquirement of rare notoginsenoside Ft1. Methods: Chemical profiles were identified by ultraperformance liquid chromatography coupled with quadruple-time-of-flight and electrospray ionization mass spectrometry (UPLC-Q/TOF-ESI-MS). The acid hydrolyzing dynamic changes of chemical compositions and the possible transformation pathways of saponins were monitored by ultrahigh-performance LC coupled with tandem MS (UHPLC-MS/ MS). Results and conclusion: Notoginsenoside Ft1 was epimerized from notoginsenoside ST4, which was generated through cleaving the carbohydrate side chains at C-20 of notoginsenosides Fa and Fc, and vinaginsenoside R7, and further converted to other compounds via hydroxylation at C-25 or hydrolysis of the carbohydrate side chains at C-3 under the acid conditions. High temperature contributed to the hydroxylation reaction at C-25 and 25% acetic acid concentration was conducive to the preparation of notoginsenoside Ft1. C-20 epimers of notoginsenoside Ft1 and ST4 were successfully separated utilizing solvent method of acetic acid solution. The theoretical preparation yield rate of notoginsenoside Ft1 was about 1.8%, which would be beneficial to further study on its bioactivities and clinical application.

Properties of hydrolyzed α-lactalbumin, β-lactoglobulin and bovine serum albumin by the alcalase and its immune-modulation activity in Raw 264.7 cell

  • Yu, Jae Min;Son, Ji Yoon;Renchinkhand, Gerelyuya;Kim, Kwang-Yeon;Sim, Jae Young;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.459-470
    • /
    • 2020
  • This study investigated the effects of the proteolytic hydrolysates of α-lactalbumin (LA), β-lactoglobulin (LG) and bovine serum albumin (BSA) by alcalase on inflammatory cytokines. The proteolytic hydrolysates were separated into two fraction of peptides, ≤ 10,000 Da and > 10,000 Da, respectively, because various low molecular weight peptides were generated during the hydrolysis reaction time. Among the hydrolysate peptides, BSA (all types), β-LG (> 10,000 Da), and α-LA (> 10,000 Da) showed an inhibitory activity against thymic stromal lymphopoietin (TSLP) mRNA expression in lipopolysaccharide-induced RAW264.7 murine macrophages. α-LA (> 10,000 Da), β-LG (hydrolysates), and BSA (> 10,000 Da) showed an inhibitory activity against tumor necrosis factor (TNF)-α expression. α-LA (all types), β-LG (hydrolysates, > 10,000 Da), and BSA (> 10,000 Da) showed an inhibitory activity against interleukin-6 (IL-6) expression. α-LA (> 10,000 Da), β-LG (> 10,000 Da), and BSA (all types) showed an inhibitory activity against inducible nitric oxide synthase (iNOS) expression. α-LA (> 10,000 Da), β-LG (> 10,000 Da), and BSA (all types) showed an inhibitory activity against cyclooxygenase (COX)-2 expression. The lowest level of TNF-α production was measured with α-LA (> 10,000 Da) and β-LG (> 10,000 Da) for all types, and a similar low level was measured for all types of BSA. The highest level of IL- 6 production was measured with α-LA (≤ 10,000 Da) among α-LA, β-LG, and IL-6. The low level of NO production was similar with α-LA, β-LG, and BSA but not with α-LA (≤ 10,000 Da). These potential peptides from whey protein hydrolysates could be used for food, medicinal, and industrial applications.

Microstructure and Properties of Organic-Inorganic Hybrids(PDMS/SiO$_2$) Through Variations in Sol-Gel Processing (졸-겔공정의 변수조절을 통해 제조된 유기-무기복합체 (PDMS/SiO$_2$)의 미세구조와 특성)

  • Eun, Hui-Tae;Hwang, Jin-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.94-103
    • /
    • 2001
  • SiO$_2$ and PDMS/SiO$_2$ xerogels which are derived PDMS into TEOS have been synthesized by sol-gel process and controlled pore size and distribution through 2 step acid/base catalyzed processes using HCI and NH$_4$OH as a catalyst. In HCl catalyzed SiO$_2$ and PDMS/SiO$_2$ xerogels, pH and gellation time of xerogel were 2.3~2.5 and 12~13 days, respectively, and the shape of xerogel was identified to pellet type and column type. Under acidic condition of final reaction solution, the hydrolysis rate is accelerating, resulting in long gel times. The shape of xerogel is pellet type. In contrast, under less acidic condition, the condensation rate is accelerating, resulting in shorter gel times and the shape of xerogel is column type. The surface area and average Pore size were changed 400$\rightarrow$600($\m^2$/g) and 15$\rightarrow$28$\AA$, respectively, depending to the increase of the mole ratio of HCl/NH$_4$OH, and represented uniform pore size distribution. It is that all the alkoxide groups are hydrolyzed by HCl after the first step and the condensation rate is enhanced by NH$_4$OH. The regular backbone structures of silica are formed at low temperature and the uniform pores are produced by heat treatment.

  • PDF

Preparation and Functional Properties of Enzymatic Oyster Hydrolysates (굴 효소 가수분해물의 제조 및 기능특성)

  • Chung, In-Kwon;Kim, Hye-Suk;Kang, Kyung-Tae;Choi, Yeung-Joon;Choi, Jong-Duck;Kim, Jin-Soo;Heu, Min-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.919-925
    • /
    • 2006
  • The study was carried out to prepare oyster hydrolysates by using Alcalase, Flavourzyme, Neutrase, Protamex, pepsin and trypsin, and to investigate its functional properties. The ACE inhibitory activity and antioxidant activity of enzymatic oyster hydrolysates did not increase with hydrolysis time. Among enzymatic oyster hydrolysates, oyster hydrolysates incubated with Protamex for 1 hr (OHP) showed the most excellent ACE inhibitory activity and antioxidant activity, and their $IC_{50}$ values were 1.16 mg/mL and 1.49 mg/mL, respectively. However, all enzymatic oyster hydrolysates were not detected in antimicrobial activity.

Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes (방사분석과 분광학을 이용한 Am(III) 가수분해와 옥살레이트 착물 화학종 연구)

  • Kim, Hee-Kyung;Cho, Hye-Ryun;Jung, Euo Chang;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.397-410
    • /
    • 2018
  • When considering the long-term safety assessment of spent-nuclear fuel management, americium is one of the most radio-toxic actinides. Although spectroscopic methods are widely used for the study of actinide chemistry, application of those methods to americium chemistry has been limited. Herein, we purified $^{241}Am$ to obtain a highly pure stock solution required for spectroscopic studies. Quantitative and qualitative analyses of purified $^{241}Am$ were carried out using liquid scintillation counting, and gamma and alpha radiation spectrometry. Highly sensitive absorption spectrometry coupled with a liquid waveguide capillary cell and time-resolved laser fluorescence spectroscopy were employed for the study of Am(III) hydrolysis and oxalate (Ox) complexation. $Am^{3+}$ ions under acidic conditions exhibit maximum absorbance at 503 nm, with a molar absorption coefficient of $424{\pm}8cm^{-1}{\cdot}M^{-1}$. $Am(OH)_3(s)$ colloidal particles formed under near neutral pH conditions were identified by monitoring the absorbance at around 506-507 nm. The formation of ${Am(Ox)_3}^{3-}$ was detected by red-shifts of the absorption and luminescence spectra of 4 and 5 nm, respectively. In addition, considerable enhancements of the luminescence intensities were observed. The luminescence lifetime of ${Am(Ox)_3}^{3-}$ increased from 23 to 56 ns, which indicates that approximately six water molecules are replaced by carboxylate ligands in the inner-sphere of the Am(III). These results suggest that ${Am(Ox)_3}^{3-}$ is formed through the bidentate coordination of the oxalate ligands.

Studies on the Manufacture of Concentrated Feed by the Use of Farm Product Waste Materials (농산물(農産物) 폐물(廢物)을 이용(利用)한 농후사료(濃厚飼料) 제조(製造)에 관(關)한 연구(硏究))

  • Kim, Sam-Soon;Lee, Ji-Yul;Park, Sung-Oh;Kim, Ki-Joo
    • The Korean Journal of Mycology
    • /
    • v.1 no.2
    • /
    • pp.15-23
    • /
    • 1973
  • Mold producing cellulase were isolated from rotten woods, and identified as the three species: Aspergillus niger van Tieghem, Aspergillus schiemanni Thom and Trichoderma viride Pers. In this paper, culture conditions in the media and characteristics of these strains were investigated. Using these strains, we have conducted a research concerning the utilization of farm product waste materia's. 1. Optimum conditions for the cellulase formation were as follows. KM 10-1; pH 5.2-5.5, $35^{\circ}C$, incubation time 6 days. OL 11-1; pH 5.5, $30-35^{\circ}C$, incubation time 6 days. SH 9-2; pH 5.5, $30^{\circ}C$, incubatoin time 6 days. 2. Their cellulase activities in their optimum condition were as follows: KM 10-1; CMC-LP 78.5% CMC-SP 4.0 glucose mg/gm of the cultures/min. OL 11-1; CMC-LP 89.9%, CMC-SP 4.9 glucose mg/gm of the cultures/min. SH 9-2; CMC-I.P 77.4%, CMC-SP 3.9 glucose mg/gm of the cultures/min. 3. Hydrolysis of animal feed containing a large quantity (23-30%) of cellulose by means of the crude enzyme in the selected strains resolved 30% of the cellulose contained in the animal feed.

  • PDF

Improvement of Radiosynthesis Yield of [11C]acetate ([11C]아세트산의 방사화학적 수율 증가를 위한 연구)

  • Park, Jun Young;Son, Jeongmin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.74-78
    • /
    • 2018
  • Purpose $[^{11}C]$acetate has been proved useful in detecting the myocardial oxygen metabolism and various malignancies including prostate cancer, hepatocellular carcinoma, renal cell carcinoma and brain tumors. The purpose of study was to improve the radiosynthesis yield of $[^{11}C]$acetate on a automated radiosynthesis module. Materials and Methods $[^{11}C]$acetate was prepared by carboxylation of grignard reagent, methylmagnesium chloride, with $[^{11}C]$$CO_2$ gas, followed by hydrolysis with 1 mM acetic acid and purification using solid phase extraction cartridges. The effect of the reaction temperature ($0^{\circ}C$, $10^{\circ}C$, $-55^{\circ}C$) and cyclotron beam time (10 min, 15 min, 20 min, 25 min) on the radiosynthesis yield were investigated in the $[^{11}C]$acetate labeling reaction. Results The maximum radiosynthesis yield was obtained at $-10^{\circ}C$ of reaction temperature. The radioactivities of $[^{11}C]$acetate acquired at $-10^{\circ}C$ reaction temperature was 2.4 times higher than those of $[^{11}C]$acetate acquired at $-55^{\circ}C$. Radiosynthesis yield of $[^{11}C]$acetate increased with increasing cyclotron beam time. Conclusion This study shows that radiosynthesis yield of $[^{11}C]$acetate highly dependent on reaction temperature. The best radiosynthesis yield was obtained in reaction of grignard reagent with $[^{11}C]$$CO_2$ at $-10^{\circ}C$. This radiolabeling conditions will be ideal for routine clinical application.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.