• Title/Summary/Keyword: hydrolysis of ginsenoside

Search Result 39, Processing Time 0.028 seconds

Change of Neutral Ginsenoside Contents in Red and Fresh Ginseng (Panax ginseng C. A. Meyer) by Hydrolysis (가수분해 처리에 의한 홍삼과 인삼의 중성 Ginsenoside 함량 변화)

  • Han, Jin Soo;Lee, Gang Seon;Tak, Hyun Seong;Kim, Jung-Sun;Ra, Jeong Woo;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • This study was carried out to investigate change of ginsenoside contents in red and fresh ginseng according to root part and age by hydrolysis. Neutral total ginsenoside contents by hydrolysis in 6-year main root and lateral root were significantly increased than those by non-hydrolysis, as 41.6 and 32.8%, respectively. However, there was no significant difference in red ginseng. In fresh ginseng, ginsenoside contents of the protopanaxatriol group such as Re, Rf, $Rg_1$, $Rg_2$, and $Rh_1$ were not significantly different, but $Rb_1$, $Rb_2$, $Rb_3$, Rc, and Rd showed significant difference. The increase rate of neutral total ginsenoside content by hydrolysis was higher in epidermis-cortex than stele. Also, the neutral total ginsenoside content was fine root > rhizome > lateral root > main root, respectively. While there was no tendency towards the increase of ginsenoside by hydrolysis with the increase of root age in fine root and rhizome, there was significant decrease in main root and lateral root.

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

Purification and Characterization of $Ginsenoside-{\beta}-Glucosidase$

  • Yu Hongshan;Ma Xiaoqun;Guo Yong;Jin Fengxie
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.50-54
    • /
    • 1999
  • In this paper, the saponin enzymatic hydrolysis of ginsenoside Rg3 was studied. The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain mainly hydrolyzed the ginsenoside Rg3 to Rh2, the enzyme from FFCDL-00 strain hydrolyzed Rg3 to the mixture of Rh2 and protopanaxadiol (aglycon). The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain was purified with a column of DEAE-Cellulose to one spot in the SDS polyacrylamide gel electrophoresis. During the purification, the enzyme specific acitvity was increased about 10 times. The purified $ginsenoside-{\beta}-glucosidase$ can hydrolyze the Rg3 to Rh2, but do not hydrolyze the $p-nitrophenyl-{\beta}-glucoside$ which is a substrate of original exocellulase such as ${\beta}-glucosidase$ of cellulose. The molecular weight of $ginsenoside-{\beta}-glucosidase$ was 34,000, the optimal temperature of enzyme reaction was $50^{\circ}C,$ and the optimal pH was 5.0.

  • PDF

Quantitative aspects of the hydrolysis of ginseng saponins: Application in HPLC-MS analysis of herbal products

  • Abashev, Mikhail;Stekolshchikova, Elena;Stavrianidi, Andrey
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.246-253
    • /
    • 2021
  • Background: Ginseng is one of the most valuable herbal supplements. It is challenging to perform quality control of ginseng products due to the diversity of bioactive saponins in their composition. Acid or alkaline hydrolysis is often used for the structural elucidation of these saponins and sugars in their side chains. Complete transformation of the original ginsenosides into their aglycones during the hydrolysis is one of the ways to determine a total saponin group content. The main hurdle of this approach is the formation of various by-products that was reported by many authors. Methods: Separate HPLC assessment of the total protopanaxadiol, protopanaxatriol and ocotillol ginsenoside contents is a viable alternative to the determination of characteristic biomarkers of these saponin groups, such as ginsenoside Rf and pseudoginsenoside F11, which are commonly used for authentication of P. ginseng Meyer and P. quinquefolius L. samples respectively. Moreover, total ginsenoside content is an ideal aggregated parameter for standardization and quality control of ginseng-based medicines, because it can be directly applied for saponin dosage calculation. Results: Different hydrolysis conditions were tested to develop accurate quantification method for the elucidation of total ginsenoside contents in herbal products. Linearity, limits of quantification, limits of detection, accuracy and precision were evaluated for the developed HPLC-MS method. Conclusion: Alkaline hydrolysis results in fewer by-products than sugar elimination in acidic conditions. An equimolar response, as a key parameter for quantification, was established for several major ginsenosides. The developed approach has shown acceptable results in the analysis of several different herbal products.

Rapid Hydrolysis of Ginseng Saponin by Microwave Oven Reaction (전자렌지 반응을 이용한 인삼 사포닌의 신속한 가수분해법)

  • Park, Man-Ki;Park, Jeong-Hill;Kang, Jong-Seong;Lee, Mi-Young;Park, Young-In;Yu, Su-Jeong;Han, Byung-Hoon
    • Journal of Ginseng Research
    • /
    • v.17 no.1
    • /
    • pp.35-38
    • /
    • 1993
  • A new and rapid method for the hydrolysis of ginsenosides to panaxadiol or panaxatriol was developed. It is based on the microwave oven reaction, which is high temperature and high-pressure reaction. The optimal hydrolysis time using 5% $H_2SO_4$ solution was found at 10 min PTFE reaction vessel in microwave oven, which is more than 30 times faster than the conventional hydrolysis method.

  • PDF

Regioselective Synthesis of Ginsenoside $Rh_2$ (진세노사이드 $Rh_2$의 방향선택적 합성)

  • 신명희;정지형;장은하;임광식
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.328-333
    • /
    • 2001
  • Ginsenoside Rh$_2$, a minor glycoside constituent of the red ginseng is known as an unique antitumor compound. Several attempts to prepare it in a large scale including semisynthesis from betulafolientriol, an 3-epimer of 20(S)-protopanaxadiol, has been reported. We have previously reported a synthesis of ginsenoside Rh$_2$from 20(S)-protopanaxadiol obtained by alkaline hydrolysis of total ginsenoside. The regioselective synthesis of this compound was achieved by protection of 12-OH group.

  • PDF

Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer (인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF

Preparation and Structure Determination of a New Glycoside, (20E)-Ginsenoside $Rh_3$, and its isomer from Diol-type Ginseng Saponins (인삼의 diol계 사포닌으로부터 새로운 배당체 (20E)-Ginsenoside $Rh_3$ 및 그의 입체이성체의 제조와 구조결정)

  • 김동선;백남인;박종대;이유희;정소영;이천배;김신일
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.85-93
    • /
    • 1995
  • Acidic and alkaline hydrolysis of diol-type ginseng saponins produced a new glycoside, (20E)-ginsenoside Rh$_{3}$, and its stereoisomer (20Z)-, which were further subjected to alkaline by drolysis to give their aglycones, (20E)- and (20Z)-3$\beta$, 12$\beta$-dihydroxy-dammar-20(22),24-diene. The ratio of stereoisomeric mixtures was estimated to be ca. 5:1 from intensities of the peaks in $^{1}$H- and $^{13}$C-NMR spectra. The $^{1}$H- and $^{13}$C-NMR signals of ginsenoside Rh$_{3}$, which have remained unclarified, were completely assigned by the extensive application of modern NMR techniques.

  • PDF