• 제목/요약/키워드: hydrolysis mechanism

검색결과 241건 처리시간 0.031초

Cefazolin Butyrolactone Ester의 합성 및 생물약제학적 연구 (Synthesis and Biopharmaceutical Studies of Cefazolin Butyrolactone Ester, a Novel Prodrug of Cefazolin)

  • 이진환;조행남;최준식
    • 약학회지
    • /
    • 제47권5호
    • /
    • pp.331-338
    • /
    • 2003
  • A butyrolactone ester of cefazolin (CFZ-BTL) was synthesized by the esterification of cefazolin (CFZ) with $\alpha$-bromo-${\gamma}$-butyrolactone. The synthesis was confirmed by the spectroscopic analysis. The CFZ-BTL was more lipophilic than the CFZ when assessed by n-octanol/water partition coefficients at various pH. The CFZ-BTL itself did not show any antimicrobial activity in vitro, but after oral administration of CFZ-BTL to rabbits, exerted significant anti-microbial activity in serum samples when measured by the inhibion zone method in nutrient agar plates, due to conversion of CFZ-BTL to an active metabolite, probably CFZ, in the body. The CFZ-BTL was also converted into CFZ as confirmed by in vitro incubation study, with tissue homogenates (liver, blood and intestine) of rabbits. The liver showed the fastest conversion rate, probably via the hydrolysis mechanism. In vivo metabolism of CFZ-BTL to CFZ was also confirmed in vivo serum samples by HPLC. The oral bioavailability of CFZ-BTL in rabbits was 1.6-fold increased when compared to CFZ, resulting from followed by enhanced lipophilicity increased passive absorption in the intestine.

우레아를 이용한 ATO(Antimony doped Tin Oxide)의 특성 연구 (Study of the Feature of Antimony doped Tin Oxide Using Urea)

  • 김진철;안용관;최병현;이미재;백종후;심광보
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.361-362
    • /
    • 2005
  • Antimony doped tin oxide(ATO) nano powders have been synthesized by homogeneous precipitation method using $SnCl_4\cdot5H_2O$ for precursor, $SbCl_3$ as doped material and urea. The hydrolysis of urea and conductive mechanism and Heat treatment was performed at the temperature from $500^{\circ}C$ to $700^{\circ}C$ in air. The ATO nano powders are characterized by means of Thermogravimetry differential thermal analyzer (TG-DTA), X-ray diffraction (XRD), Brunauer, Emmett, and Teller adsorption (BET), Scanning electron microscopy (SEM) ATO nano powders with an average size of nm and the highest surface area 129 $m^2g^{-1}$ are obtained.

  • PDF

고중성지방혈증 급성췌장염의 최신 지견 (An Update on Hypertriglyceridemia-Induced Acute Pancreatitis)

  • 김홍자
    • The Korean Journal of Medicine
    • /
    • 제93권6호
    • /
    • pp.518-524
    • /
    • 2018
  • Hypertriglyceridemia a major cause of acute pancreatitis, accounting for up to 10% of all cases. The pathophysiological mechanism of hypertriglyceridemia-induced acute pancreatitis (HTGP) is presumed to involve the hydrolysis of triglycerides by pancreatic lipase resulting in an excess of free fatty acids and elevated chylomicrons, which are thought to increase plasma viscosity and induce ischemia and inflammation in pancreatic tissue. Although the clinical course of HTGP is similar to other forms of acute pancreatitis, the clinical severity and associated complications are significantly higher in patients with HTGP. Therefore, an accurate diagnosis is essential for treatment and prevention of disease recurrence. At present, there are no approved guidelines for the management of HTGP. Different treatment modalities such as apheresis/plasmapheresis, insulin, heparin, fibric acids, and omega-3 fatty acids have been successfully implemented to reduce serum triglycerides. Following acute phase management, lifestyle modifications including dietary adjustments and drug therapy are important for the long-term management of HTGP and the prevention of relapse. Additional studies are required to produce generalized and efficient treatment guidelines for HTGP.

Studies on the Nephrotoxic Mechanism of 3-MCPD

  • Park, Chang-Won;Kim, Kwang-Jin;Kim, Jae-Hee;Suh, Soo-Kyong;Kim, Jong-Won;Kim, Kyu-Bong;Park, Jung-Won;Hwang, Kwan-Ik;Seo, Kyung-Won
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.172.1-172.1
    • /
    • 2003
  • 3-Monochloro-1 ,2-propanediol (3-MCPD) produced during the acid hydrolysis of vegetable proteins (ex. soybean products) is food-contaminant material detected in acid-hydrolysed soy, bread, water, et al. 3-MCPD is currently being a matter of concern to safety. The nephrotoxicity of 3-MCPD and 3-MCPD metabolites has been reported to result from accumulating of metabolites in kidney tubules and inhibiting of renal metabolism of glucose and lactate. (omitted)

  • PDF

SYNTHESIS OF HALOGENATED 9-(DIHYDROXYCYCLOPENT -4′-ENYL) ADENINES AND THEIR INHIBITORY ACTIVITIES AGAINST S-ADENOSYLHOMOCYSTEINE HYDROLASE

  • Choi, Won-Jun;Park, Jae-Gyu;Moon, Hyung-Ryong;Gunaga Prashantha;Lee, Kang-Man;Kim, Hea-Ok;Jeong, Lak-Shin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.365.2-365.2
    • /
    • 2002
  • S-Adenosylhomocysteine hydrolase (SAH) catalyzes the hydrolysis of S-adenosylhomocysteine to adenosine and L -homocysteine and has been an attractive target for the development of broad spectrum antiviral agents. Neplanocin A and 9-(dihydroxycyclopent-4' -enyl)adenine (DHCeA) have been known to inhibit SAH by cofactor (NAD+) depletion mechanism and their inhibition is reversed by the addition of NAD+ or dialysis. (omitted)

  • PDF

인삼의 열처리 과정 중 생성되는 3종의 수산화진세노사이드에 대한 연구 (Three Hydroxylated Ginsenosides from Heat Treatmented Ginseng)

  • 이상명
    • 생약학회지
    • /
    • 제51권4호
    • /
    • pp.255-263
    • /
    • 2020
  • Ginsenosides are considered to be the most important ingredients in ginseng. They are chemically converted by endogenous organic acids contained in ginseng and the heat applied during red ginseng processing. During this procedure, various converted ginsenosides are produced through hydrolysis of substitute sugars of ginsenosides and forming double bonds through dehydration in the dammarane skeleton. In order to study the conversion mechanism of protopanaxadiol-type ginsenosides during the heat treatment process of ginseng, we purified the three final converted ginsenosides by heating fresh ginseng for a long time. The three isolated ginsenosides were identified as 25(OH)-ginsenoside Rg5, 25(OH)-ginsenoside Rz1 and 25(OH)-ginsenoside Rg3 through NMR spectrum analysis. As a result of quantification of ginseng heated at 100 ℃ for 0 to 6 days by HPLC/UV and TLC methods, the content of 25(OH)-ginsenosides tended to increase in proportion to the time exposed to heat. In particular, the content of 25(OH)-ginsenosid Rg5 was confirmed to be noticeably increased.

Kinetics and Reaction Mechanism for Alkaline Hydrolysis of Y-Substituted-Phenyl Diphenylphosphinates

  • Hong, Hyo-Jeong;Lee, Jieun;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2001-2005
    • /
    • 2013
  • The second-order rate constants ($k_{OH^-}$) for the reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $OH^-$ in $H_2O$ at $25.0{\pm}0.1^{\circ}C$ have been measured spectrophotometrically. Comparison of $k_{OH^-}$ with $k_{EtO^-}$ (the second-order rate constants for the corresponding reactions with $EtO^-$ in ethanol) has revealed that $EtO^-$ is less reactive than $OH^-$ although the former is ca. 3.4 $pK_a$ units more basic than the latter, indicating that the reactivity of these nucleophiles is not governed by their basicity alone. The Br${\o}$nsted-type plot for the reactions of 4a-4i with $OH^-$ is linear with ${\beta}_{lg}$ = -0.36. The Hammett plot correlated with ${\sigma}^-$ constants results in a slightly better correlation than that correlated with ${\sigma}^{\circ}$ constants but exhibits many scattered points. In contrast, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ${\rho}$ = 0.95 and r = 0.55. The r value of 0.55 implies that a negative charge develops partially on the O atom of the leaving group. Thus, the reactions of 4a-4i with $OH^-$ have been concluded to proceed through a concerted mechanism.

REACTION OF PAPER PULP AND ALKYL KETENE DIMER BY AGING TREATMENT DURING PAPERMAKIN PROCESS

  • Shin, Young-Doo;Seo, Won-Sung;Cho, Nam-Seok
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2000년도 추계학술발표논문집
    • /
    • pp.83-83
    • /
    • 2000
  • Alkylketene dimer was known as a cellulose reactive or alkaline size because it does not require to fix to the fiber as do the traditional rosin sizes. A proposed sizing mechanism of AKD was the formation of P -ketoester bond between AKD and cellulose which provides the permanent attachment and the orientation of the hydrophobic alkylchains outward. However, some questions about the reaction had arisen and thus, the sizing mechanism of AKD has been a subject of controversy for several decades. The major concern of the controversy is that AKD is really reactive with cellulose or not in the papermaking conditions. In this study, reaction between AKD and pulp fiber was investigated, in order to find out whether AKD forms P-ketoester with pulp fiber during aging under no catalyzed neutral condition with obvious spectroscopic evidence. In addition, effect of aging treatment on the sizing development was studied. It has been disclosed that, in absence of water, AKD reacted with cellulose to form P -ketoester linkage under no catalyzed neutral condition, while, in presence of water, most of AKD was hydrolyzed to a dialkyl ketone or P -ketoacid. In addition, during the aging treatment of AKD-sized paper, its typical IR spectra bands gradually were reduced, completely disappeared after 6hr aging, and formed new absorption bands at 1707cm-' and shoulder peak at 1700cm-' which refer to the typical dialkylketone absorption bands. Therefore, the formation of P -ketoester between AKD and pulp fiber is impossible in the practical papermaking process. It could be suggested that the sizing development of AKD-sized paper is obtained by next two mechanism: 1) formation of a thin-layer of AKD on the fiber surface through melting and spreading of AKD emulsion particles by heat and 2) the hydrolysis of AKD to dialkyl ketone which has higher melting point, during drying and storage of AKD sized papers.

  • PDF

응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구 (A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition)

  • 송유경;정철우;손인식
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

구름버섯 기원 항응고성 다당류의 혈액응고 저해기작 (Inhibitory Mechanism of Blood Coagulation by the Anticoagulant Polysaccharide from Coriolus versicolor)

  • 이현순;권미향;임왕진;성하진;양한철
    • 한국식품과학회지
    • /
    • 제29권4호
    • /
    • pp.817-822
    • /
    • 1997
  • 구름버섯 자실체에서 분리된 항응고성 다당류의 혈액응고 저해기작을 검토하였다. 항응고성 다당(CV-40-Va-1)은 vWF의 활성을 감소시킴으로써 혈소판응집을 억제시키는 것으로 나타났으며, 혈액응고인자중 thrombin뿐만이 아니라 내인성경로의 factor VII, IX, XI, XII의 활성 또한 억제 하였다. 그러나 CV-40-Va-1의 항응고 활성은 thromin에 직접 작용하는 것이 아니라 antithrombin III 의존적 활성을 보였다. Sulfation에 의하여 CV-40-Va-1의 항응고활성의 증가와 다당의 desulfation시 상반된 결과에서 CV-40-Va-1의 황산기가 항응고활성의 중요한 인자임을 알 수 있었다. CV-40-Va-1을 TFA로 부분가수분해하여 얻은 획분들(Fr.I, Fr.II)에서는 항응고 활성이 감소하였으나 분자량 1,000정도로 추정되는 획분(Fr.II)은 오히려 혈소판응집을 강력하게 억제하였다.

  • PDF