• Title/Summary/Keyword: hydrolysis index

Search Result 76, Processing Time 0.028 seconds

Synthesis of Size Controlled Spherical Silica Nanoparticles via Sol-Gel Process within Hydrophilic Solvent

  • Kim, Tae Gyun;An, Gye Seok;Han, Jin Soon;Hur, Jae Uk;Park, Bong Geun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this study, based on hydrolysis and condensation via $St{\ddot{o}}ber$ process of sol-gel method, synthesis of mono-dispersed silica nanoparticles was carried out with hydrophilic solvent. This operation was expected to be a more simplified process than that with organic solvent. Based on the sol-gel method, which involves simply controlling the particle size, the particle size of the synthesized silica specimens were ranged from 30 to 300 nm by controlling the composition of tetraethylorthosilicate (TEOS), DI water and ammonia solution, and by varying the stirring speeds while maintaining a fixed amount of ethanol. Increasing the content of DI water and decreasing the content of ammonia caused the particle size to decrease, while controlling the stirring speed at a high level of RPMs enabled a decrease of the particle size. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the success factors for synthesizing process; Field emission scanning electron microscopy (FE-SEM) was used to study the effects of the size and morphology of the synthesized particles. To analyze the dispersion properties, zeta potential and particle size distribution (PSD) analyses were utilized.

Synthesis of Novel Polythiol for Plastic Optical Lens and its Ophthalmic Lens

  • Jang, Dong-Gyu;Roh, Soo-Gyun;Kim, Jong-Hyo;Jin, Wen-Yi;Seo, Jin-Moo;Kwon, Myeong-Ja;Lee, Soo-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2227-2232
    • /
    • 2009
  • Novel polythiol materials of urethane lens series for plastic optical lens were synthesized from polyol materials via thioisouronium of thiourea with c-HCl in refluxing aqueous solution, in which polythiol material was carried out from hydrolysis of thioisouronium by ammonia water. Their structure properties were identified by EA, EI-MS, FT-IR, $^1H\;and\;^{13}C$ NMR spectroscopies and TGA. Their ophthalmic lenses as polythiourethane material were prepared by thermal curing to an injected glass mold using the evenly solutions of diisocyanates series (TDI, XDI, HDI or IPDI) with polythiols. Polythiourethane shows that the strong stretching mode for SH group of polythiol disappeared in FT-IR spectra after thermosetting polymerization. Thermal deformation starting temperature of ophthalmic lenses was determined by TMA. Ophthalmic lenses made from characteristic polythiol and diisocyanate series have transparency, colorless and good impact strength, in which thermal resistance and impact strength of ophthalmic lenses were influenced by diisocyanate series. Physical properties of ophthalmic lens have contrast thermal resistance with impact strength. The property of thermal resistance and impact strength for respective ophthalmic lenses was examined by TMA and drop ball test.

Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System (박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구)

  • Jang, Jaehwan;Park, Hyunchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • Among various De-NOx technologies, Urea-based Selective Catalytic Reduction (SCR) systems are known to be the most effective in marine diesel applications. The spraying and mixing behavior of the urea-water solution has a decisive effect on the system's net efficiency. Therefore, in this study, the spray behavior and ammonia uniformity with and without a static mixer were analyzed by CFD in order to optimize the SCR system. The results showed that the static mixer significantly affected the uniformity of velocity and ammonia concentration. Static mixers may be especially suited for marine SCR systems with space constraints.

Performance of a Novel Sulfonate Flame Retardant Based on Adamantane for Polycarbonate (아드만탄 기반의 새로운 설포네이트 폴리카보네이트 난연제 성능 연구)

  • Guo, Jianwei;Wang, Yueqin;Feng, Lijuan;Zhong, Xing;Yang, Chufen;Liu, Sa;Cui, Yingde
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.437-441
    • /
    • 2013
  • A novel sulfonate flame retardant, 1,3,5,7-tetrakis(phenyl-4-sodium sulfonate)adamantane (FR-A), was successfully synthesized from 1-bromoadamantane in sequential four-step reactions involving Fiedel-Crafts phenylation, sulphonation, hydrolysis, and neutralization. The success of synthesis was confirmed by FTIR spectra, $^1H$ NMR spectra, elemental analyses and mass spectra. The effect of FR-A on the flame retardacy of polycarbonate (PC) has been studied. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) showed that this novel sulfonate flame retardant had effective flame retardancy on polycarbonate (PC). With a small amount (0.08 wt%) of FR-A, the flame retardancy of PC was improved obviously, which got to UL 94 V-0 rating. TGA and DTA curves demonstrated that the additive raised the degradation rate of PC by promoting the quick formation of an insulating carbon layer on the surface, and confirmed that the flame retardant mechanism of PC/FR-A system was similar to potassium diphenylsulfone sulfonate (KSS).

Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time

  • Haque, Md. Azizul;Barman, Dhirendra Nath;Kang, Tae Ho;Kim, Min Keun;Kim, Jungho;Kim, Hoon;Yun, Han Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1681-1691
    • /
    • 2012
  • This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at $105^{\circ}C$ for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOH-pretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of ${\beta}$-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.

Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function (광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성)

  • Kang, You-an;Jin, Sang-Keun;Ko, Jonghyun;Choi, Yeung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

Effects of Heat Treatments on Physicochemical Properties and In Vitro Biological Activities of Quinoa (Chenopodium quinoa Willd.) (퀴노아의 열처리 가공에 따른 이화학적 특성 및 In Vitro 생리활성)

  • Goh, Hye-Kyung;Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.688-694
    • /
    • 2017
  • The effects of heat treatments on the physicochemical properties and in vitro biological activities of quinoa (Chenopodium quinoa Willd.) were investigated. Quinoa grains were subjected to two different heat treatment methods: boiling and steaming plus roasting (steaming/roasting). Compared with raw quinoa, boiled quinoa samples had slightly lower crude protein, crude fat, crude ash, and starch contents. However, steaming/roasting treatment did not cause significant differences in proximate composition. Heat treatments reduced total phenolic and flavonoid contents in quinoa extracts, and higher reduction was detected upon boiling treatment. Heat treatments also reduced lightness and increased yellowness of quinoa samples. Heat treatments increased water absorption index but decreased water solubility index. In vitro starch hydrolysis increased substantially after both heat treatments, and slightly higher values were observed in the boiled quinoa samples. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activity and nitrite scavenging activity were reduced by heat treatments, and the boiled quinoa sample showed the lowest activity likely due to loss of activities in cooking water.

Formation of Alunite and Schwertmannite under Oxidized Condition and Its Implication for Environmental Geochemistry at Dalseong mine (산화환경하에서 명반석, 슈베르트마나이트의 형성특징과 환경지구화학적 의미: 달성광산)

  • 추창오;이진국;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Sulfates such as alunite and schwertmannite formed under oxidation condition play a important role in geochemical processes taken place at waste dumps and a creek from Dalseong mine, Daegu. Water chemistry shows pH decreases from upstream toward downstream creek, mainly due to formation of schwertmannite that is the most abundant phase along the creek. The removal of Al from the creek is preferentially attributed to formation of Al-bearing minerals and Al-sulphates. Among them, alunite is the most important Al-sink phase that occurs at higher pH than $pK_1$, Al hydrolysis constant. With high saturation index, alunite formed at the creek has a spherical form, commonly associated with schwertmannite. Secondary minerals formed on the surface of altered or weathered surfaces of heavy metals from the wasted dump that underwent severe oxidation, where alunite has characteristic habits which are spheric, radiating, and botrytis-like aggregates. Natroalunite occurs in association with alunite, or as mixtures of both of them. Because the pH decreases with distance due to formation of schwertmannite, although total contents of dissolved ions slowly lessen at least in the AMD, it is expected that the minerals precipitated at the creek can be exposed to subsequent dissolution, which may induce possible environmental problems.

Effects of ethanol and phenobarbital on hemoglobin adducts formation in rats exposed to benzidine (흰쥐에서 에탄올과 phenobarbital이 벤지딘의 헤모글로빈 부가체 형성에 미치는 영향)

  • Kim, Chi Nyon;Lee, Se Hoon;Kim, Hyun-Soo;Youn, Young-Shik;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.118-125
    • /
    • 2001
  • Recently, biochemical analysis using hemoglobin adduct is frequently performed to evaluate the exposure to chemical carcinogens. However, data on the effect of co-exposure with other chemicals on hemoglobin adduct formation are seldom provided. The objective of this study is to evaluate the effects of pretreatment of ethanol(EtOH) and phenobarbital(PB), which are known to affect metabolism of xenobiotics, on the formation of hemoglobin adducts in the rats(Sprague-Dawley) administered benzidine(BZ). The experimental rats were divided into control, EtOH, and P8 groups. Rats were pretreated with EtOH or PB 24 hours before the oral administration of BZ. Blood sampling was taken before the administration of the chemicals and 0.5, 3, 6, 9, 12, 24, 48, 72, 96, and 144 hours after the administration of the BZ in 5 rats each. The blood was separated into hemoglobin and plasma immediately after taking the blood samples, and the adducts were undergone basic hydrolysis to convert them into aromatic amines. Hydrolyzed BZ, monoacetylbenzidine (MABZ), and 4-aminobiphenyl(4ABP) were separated by reversed-phase liquid chromatography without derivatization, and quantitative analyses of them were performed by a highperformance liquid chromatograph equipped with electrochemical detector. The quantitative amount of the metabolites was expressed by hemoglobin binding index(HBI), BZ-, MABZ-, and 4ABP-HBI of EtOH and PB groups were increased more than those of control group. These results are attributable to the fact that EtOH and PB induced N-hydroxylation related to the hemoglobin adduct formation. The ratio of N-acetylation (viz, MABZ-HBI/BZ-HBI) showed no significant difference between EtOH group and control group. It means that EtOH increased N-hydroxylation and N-acetylation in a similar degree. The N-acetylation ratio of PB group was relatively lower than control group because the PB increased N-hydroxylation induction. The N-acetylation ratios of all groups were higher than 1 during the entire experimental period. This result suggests that the effects of EtOH or PB need to be considered in the biochemical monitoring for the assessment of intermittent exposure of benzidine.

  • PDF

Quality Characteristics of Misutkaru and Their Cookies Made with Immature Whole Green Rice and Barely (미성숙 전곡립 미숫가루와 이를 첨가한 쿠키의 품질특성)

  • Yi, A-Young;Kim, Ye-Seul;Lee, Jeung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1805-1812
    • /
    • 2013
  • The quality and sensory characteristics of Misutkarus, made from immature-whole green rice (IWGR) and barley (IWGB), and their cookies were assessed. Misutkarus of IWGR and IWGB showed a significantly higher water absorption index and viscosity, as well as higher hydrolysis rate by ${\alpha}$-amylase, resulting in higher amount of reducing sugar than those of mature brown rice and barley. The cookies made with 30% Misutkarus of IWGR and IWGB showed harder texture, lower spread ratio, darker and more reddish color than cookies with 100% wheat flour (control). For sensory evaluation, the beverage was prepared by mixing Misutkarus, milk and honey, and the beverages of IWGR and IWGB could not provide acceptable sensory quality due to reduced nutty taste and stronger greenish aroma. However, when added to prepare cookies, 30% Misutkarus of IWGB imparted the favorable taste, aroma, texture and overall preference by presenting no significantly different sensory characteristics with wheat flour.