• 제목/요약/키워드: hydrological monitoring

검색결과 147건 처리시간 0.033초

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정 (Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique)

  • 김령은;이옥정;최정현;원정은;김상단
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

New Zealand Hydrology: Key Issues and Research Directions

  • Davie, T.J.A.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1-7
    • /
    • 2007
  • New Zealand is a hydrologically diverse and active country. This paper presents an overview of the major hydrological issues and problems facing New Zealand and provides examples of some the research being undertaken to solve the problems. Fundamental to any environmental decision making is the provision of good quality hydrometric data. Reduced funding for the national hydrometric network has meant a reduction in the number of monitoring sites, the decision on how to redesign the network was made using information on geographic coverage and importance of each site. New Zealand faces a major problem in understanding the impacts of rapid land use change on water quantity and quality. On top of the land use change is overlain the issue of agricultural intensification. The transfer of knowledge about impacts of change at the small watershed scale to much larger, more complex watersheds is one that is attracting considerable research attention. There is a large amount of research currently being undertaken to understand the processes of water and nutrient movement through the vadose zone into groundwater and therefore understanding the time taken for leached nutrients to reach receiving water bodies. The largest water management issue of the past 5 years has been based around fair and equitable water allocation when there is increasing demand for irrigation water. Apart from policy research into market trading for water there has been research into water storage and transfer options and improving irrigation efficiency. The final water management issue discussed concerns the impacts of hydrological extremes (floods and droughts). This is of particular concern with predictions of climate change for New Zealand suggesting increased hydrological extremes. Research work has concentrated on producing predictive models. These have been both detailed inundation models using high quality LIDAR data and also flood models for the whole country based on a newly interpolated grid network of rainfall.

  • PDF

가뭄관리정보시스템 마스터플랜수립 연구 (Study on Establishment of Master Plan flor Drought Management Information System)

  • 박진혁;고덕구;이근상;황의호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1481-1485
    • /
    • 2005
  • This study aims at establishing master plan for efficient establishment of comprehensive drought management information system as non-structural drought counterplan which provides drought damage in advance. Domestic and abroad research related to drought were surveyed and analyzed through many literature and internet for systematic drought management information system. Long-term master plan for comprehensive drought management information system is divided into 3 steps. In first step, drought monitoring system including development of hydrological drought assessment index, drought outlook analysis method and GIS web based drought monitering system is established. In second step, water supply plan and guideline through water shortage danger assessment by areal characteristics is established. In third step, comprehensive management information system through export system linked to KORSIM and establishment of information shared system between each bureau related to drought. Based on this study, master plan for efficient development and application of drought management information system is proposed, it is expected to be applied as guideline for second and third step of drought management information system.

  • PDF

보청A유역 유량 및 영양물질 자동보정을 위한 HSPF-PEST 연계적용 (Automatic Calibration of Stream Flow and Nutrients Loads Using HSPF-PEST at the Bochung A Watershed)

  • 전지홍;최동혁;임경재;김태동
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.77-86
    • /
    • 2010
  • Hydrologic Simulation Program-Fortran (HSPF) coupled with PEST which is optimization program was calibrated and validated at Bochung watershed by using monitoring data of water quantities and nutrient loading. Although the calibrated data were limited, model parameters of each land use type were optimized and coefficient of determinations were ranged from 0.94 to 0.99 for runoff, from 0.89 to 1.00 for TN loading, and from 0.92 to 1.00 for TP loading. The optimized hydrological parameters indicated that the forested land could retain rainfall within soil layer with high soil layer depth and infiltration rate compared with other land use type. Hydrological characteristics of paddy rice field are low infiltration rate and coefficient of roughness. The calibrated parameters related to nutrient loading indicated generation of nutrient pollution from agricultural area including upland and paddy rice field higher than other land use type resulting from fertilizer application. Overall PEST program is useful tool to calibrate HSPF automatically without consuming time and efforts.

人工衛星 資料에 근거한 한반도 물수지 분포의 推定 (Estimation of Water Balance based on Satellite Data in the Korean Peninsula)

  • 신사철
    • 물과 미래
    • /
    • 제29권5호
    • /
    • pp.203-214
    • /
    • 1996
  • 물수지향의 정량적 평가는 수문학의 기본이 되는 중요한 개념이다. 물수지는 수자원의 실태 파악과 기후 변화를 포함한 환경 변화를 이해하기 위하여 그 중요성이 인식되고 있다. 본 논문은 인공위성 자료로부터 얻을 수 있는 식생자료를 근거로 하여 물수지향을 평가하기 위한 방법을 제안한다. 본 연구에서는 NOAA/AVHRR 자료로부터 얻어지는 식생지표 NDVI를 이용하여 직접 실제증발산량을 구하는 방법을 개발하여 그 결과로서 한반도 전역에 대한 물수지해석을 수행한다. 증발산량, 유출률, 과잉수분량과 부족수분량의 공간적 분포를 NDVI와 간략한 물수지모형으로 이용하여 얻고 있다. 이 방법을 이용함으로서 충분한 지상자료를 얻을 수 없는 북한지역을 포함한 한반도 전역에 대한 수문학적 문제의 논의가 가능하게 된다.

  • PDF

침엽수 산림에서의 토양수분 감쇄특성 분석 (Analysis of Soil Moisture Recession Characteristics in Conifer Forest)

  • 홍은미;최진용;남원호;유승환
    • 한국농공학회논문집
    • /
    • 제53권4호
    • /
    • pp.1-9
    • /
    • 2011
  • Forest area covers 64 % of the national land of Korea and the forest plays a pivotal role in the hydrological process such as flood, drought, runoff, infiltration, evapotranspiration, etc. In this study, soil moisture monitoring for conifer forest in experimental forest of Seoul National University has been conducted using FDR (Frequency Domain Reflection) for 6 different soil layers, 10, 20, 30, 60, 90 and 120 cm during 2009~2010, and precipitation data was collected from nearby AWS (Automatic Weather Station). Soil moisture monitoring data were used to estimate soil moisture recession constant (SMRC) for analyzing soil moisture recession characteristics. From the results, empirical soil moisture recession equations were estimated and validated to determine the feasibility of the result, and soil moisture contents of measured and calculated showed a similar tendency from April to November. Thus, the results can be applied for soil moisture estimation and provided the basic knowledge in forest soil moisture consumption. Nevertheless, this approach demonstrated applicability limitations during winter and early spring season due to freezing and melting of snow and ice causing peculiar change of soil moisture contents.

논 물꼬관리 기법 적용에 따른 원단위 삭감부하량 산정식 평가 (Assessing the Unit Load Reduction Equation of Drainage Outlet Raising Management in Paddy Fields)

  • 김동현;오흥근;장태일;함종화
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.35-45
    • /
    • 2023
  • The DOR (Drainage outlet raising) in the paddy field has been suggested as one of the most important best management practices for the TMDL (Total maximum daily load) management in the technical guidelines by the NIER (National institute of environmental research). However, this method is underestimated and is not well adopted by local governments for the TMDL. The purpose of this study is to evaluate the unit load reduction equation according to the application of DOR in order to expand this equation. The original equation in the guideline was derived using the HSPF (Hydrological Simulation Program-Fortran) model for 1 year in Changnyeong. We analyzed the reduction effect of the original equation application by collecting additional long-term monitoring data from the Buan, Icheon, Iksan, and Jeonju. When comparing the reduction loads between the original equation and monitoring results, the evaluation results of the original equation were 11% of the monitoring analysis results, which was underestimated. This means that the original equation needs to be improved. For assessing the equation, the HSPF Paddy-RCH model was established according to the NI ER guideline and evaluated for applicability. The performance results of the model showed a reasonable range by the statistical criteria. Modified equations 1 and 2 were proposed based on the monitoring and modeling results. Modified equation 1 was the method of modifying the original equation's main factors, and modified equation 2 was the method of applying the non-point pollution reduction efficiency according to the rainfall class using the long-term modeling results. At the level of 58.6~64.6% of monitoring data, the difference between them could be further reduced compared to the original equation. The suggested approach will be more reasonable and practicable for decision-makers and will contribute to the TMDL management plans.

하천형 저수지 팔당호의 육수학적 특성:수문과 수환경 요인 (Limnological Characteristics of the River-type Paltang Reservoir, Korea: Hydrological and Environmental Factors)

  • 신재기;강창근;김호섭;황순진
    • 생태와환경
    • /
    • 제36권3호통권104호
    • /
    • pp.242-256
    • /
    • 2003
  • 본 연구는 하천형 저수지 (팔당호)에서 강우 ·유량 패턴과 주요 수환경 요인과의 관련성을 파악하기 위해 1999년 1월부터 2001년 12월까지 일 모니터링 하였다. 수환경의 일 변동을 관찰한 결과 자연적 기후 요인과 유량 변동의 수문학적 요인 영향이 주요한 것으로 나타났다. 강수량은 수문 변동의 주된 근원이 되었고, 강수빈도는 유량의 변동 폭을 좌우하는 직접적인 변수가 될 수 있었다. 강수량은 11 ${\sim}$ 5월에 적었고, 6 ${\sim}$ 10월에 풍부하여 대비가 되었으며 여름철과 가을철에 편중된 구조를 보였다. 유량은 7 ${\sim}$ 9월사이에 변동 폭이 가장 컸고, 1 ${\sim}$ 2월로 갈수록 변동이 거의 없었다. 주요 환경 요인에 대한 수문학적 영향은 각 요인의 계절적 변동을 좌우하였고, 그 양상은 크게 증가형, 감소형 및 중간형의 3가지유형으로 나눌 수 있었다. 환경 요인 중에서 수온, 탁도, 색도 및 유기물(COD)요인은 증가형에, DO, pH는 감소형에 해당하였다. 중간형에는 전기전도도, 알칼리도 및 염소 이온 농도가 포함되었으며, 각 요인간에도 상호 관련성이 관찰되었다. 육수학적 특성으로 볼 때,호수형 저수지의 특성과 다소 이질적인 하천형 저수지의 수환경관리에 대해 수문학적 요인의 중요성이 제시될 수 있었다.

군자 시험배수구역 합류식 하수관거시스템의 일일하수량 및 직접유출량 산정 (Estimation of Daily Sewage and Direct Runoff for the Combined Sewer System of Gunja Experimental Drainage)

  • 김충수;한명선;김형섭
    • 한국수자원학회논문집
    • /
    • 제42권3호
    • /
    • pp.191-200
    • /
    • 2009
  • 기상 이변과 해수 온도 상승으로 인한 국지성 집중 호우 및 돌발홍수, 대형급 태풍 빈발 등에 대비하기 위하여 홍수예보와 방재 대책에 가장 기본이 되는 각 유역 특성별 수문 기초자료의 축적 및 분석이 더욱 필요하게 되었다. 특히 홍수시 큰 피해를 가져오는 도시지역의 수문 모니터링이 부족한 실정을 고려한다면 도시하천별, 소배수구역별 수문 관측 및 제공이 필요하다. "도시홍수재해관리기술연구사업단"에서는 도시하천 유역의 수문현상 규명을 위한 기초정보 축적을 위해 중랑천 유역에 시험배수구역(신내1 배수구역, 군자 배수구역, 어린이대공원 배수구역)을 운영하여 수문 관측 및 자료 분석을 수행하였다. 본 연구에서는 실시간으로 관측되고 있는 도시하천 시험배수구역 중 주로 상가지역 및 주택지역으로 구성되어 있는 군자 배수구역에서 합류식 하수관거를 통해 유출되는 유량자료를 주간별, 요일별로 분석하여 일일하수량과 강우 발생시 직접유출량을 산정하였다. 이를 통해 도시하수 유출의 특성 분석이 가능하며 하수관거 관리 대책 수립에 유용한 자료로 활용될 것으로 판단된다. 또한 산정된 직접유출량은 강우-유출 모형(SWMM) 모의를 통해 모의값과 비교, 분석되었다.