• 제목/요약/키워드: hydrologic characteristics

검색결과 321건 처리시간 0.03초

생태면적률과 투수포장 비율의 시계열 분석을 통한 경의선숲길의 물 순환체계 특성 분석 (An Analysis on the Characteristics of the Hydrologic Cycle along Gyeongui Line Forest Park through time series analysis of Biotope Area Ratio and permeable ratio)

  • 김미후;오충현
    • 한국환경복원기술학회지
    • /
    • 제23권3호
    • /
    • pp.105-119
    • /
    • 2020
  • The purpose of this study is to analyze the hydrologic cycle environment of Gyeongui Line Forest Park, a linear city park, in order to improve hydrologic cycle systems in urban areas. The method of the study is the Biotope Area Ratio and the Permeable ratio survey. The study subject is the Gyeongui Line Forest Park, created in 2016 as a linear park in Seoul. The results showed that the Biotope Area Ratio improved by 31.2% (31,927㎡) from 35.7% (36,480㎡) in 2000 to 66.9% (68,407㎡) in 2019 on a site area of 102,117㎡. Next, the Permeable ratio improved by 43.8% from 29.0% to 72.8%, and the impermeable ratio decreased by 43.8% from 71.0% to 27.2%. The Biotope Area Ratio exceeded the target ratio of 60% by 6.9%, set by the Ministry of Environment. The ratio of green space exceeded the target ratio of 60%, by 4.0%. And so they contributed to the improvement of the hydrologic cycle by the creation of the Gyeongui Line Forest Park. Urban parks need to exceed the Biotope Area Ratio and the green area ratio of the legal standards, especially when creating large parks of over 100,000 square meters, in the era of climate change. It is necessary to continuously plant trees in the space where trees can be planted, and to contribute to the improvement of the hydrologic cycle system and urban heat island effect by conducting three-dimensional.

A Study on the Subdivision of Water Body in Watersheds Classified by Remote Sensing

  • Choi, Hyun
    • 한국측량학회지
    • /
    • 제38권2호
    • /
    • pp.87-95
    • /
    • 2020
  • South korea has been developing and managing the complete dimensions, around the rivers to rapid economic growth. In Korea, where water resources are scarce, administration and work are complicated and diversified in the computerization of related facilities and hydrologic data due to the indiscriminate development of river facilities. In general, dividing the water system based on object in remote sensing is relatively accurate in the image with the same spectral characteristics. However, the distinction between the reservoir and the river must be made manually due to the characteristics of remote sensing. Therefore, this study performed three classifications using GIS (Geographic Information System) to classify reservoirs and rivers. For the purpose of accuracy analysis, the land cover map provided by EGIS (Environmental Geographic Information Service) was used to evaluate the accuracy, and the average of 85.63% was found to be 75.40% of rivers, 89.50% of reservoirs, and 92.00% of others.

인터넷 수문관측시스템을 이용한 도시수문 모니터링 (Urban Hydrologic Monitoring due to Internet Hydrologic Monitoring System)

  • 서규우;김남길;나현우;이인록
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1321-1325
    • /
    • 2004
  • The continuous monitoring of the runoff in the small-scaled urban watershed and easily accessible experiment catchment is necessary to investigate the overall status of the development in the urban catchment and the varying aspects of the discharge characteristics due to the urbanization. However, the research on the management and the characteristics of the small-scaled model basin for discharge tests has not been actively performed up to now. This study selects the Dong-Eui university basin, which locates at Gaya-dong in Busan, as the experiment catchment to monitor the discharge rate in the urban watershed. EMS(DEMS, DATA-PCS EMS, mini rain gage & AWS(AWS-DEU, DATA-PCS AWS) monitoring system installed for the collection of hydrological data such as the rainfall and the waterlevel. This experiment catchment is the typical urban catchment and is under development, and it is possible to analyze the varying aspects of the discharge rate during and after the development.

  • PDF

Estimation and Classification of Flow Regimes for South Korean Streams and River

  • Park, Kyug Seo;Choi, Ji-Woong;Park, Chan-Seo;An, Kwang-Guk;Wiley, Michael J.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.106-106
    • /
    • 2015
  • The information of flow regimes continues to be norm in water resource and watershed management, in that stream flow regime is a crucial factor influencing water quality, geomorphology, and the community structure of stream biota. The objectives of this study were to estimate Korean stream flows from landscape variables, classify stream flow gages using hydraulic characteristics, and then apply these methods to ungaged biological monitoring sites for effective ecological assessment. Here I used a linear modeling approach (MLR, PCA, and PCR) to describe and predict seasonal flow statistics from landscape variables. MLR models were successfully built for a range of exceedance discharges and time frames (annual, January, May, July, and October), and these models explained a high degree of the observed variation with r squares ranging from 0.555 (Q95 in January) to 0.899 (Q05 in July). In validation testing, predicted and observed exceedance discharges were all significantly correlated (p<0.01) and for most models no significant difference was found between predicted and observed values (Paired samples T-test; p>0.05). I classified Korean stream flow regimes with respect to hydraulic and hydrologic regime into four categories: flashier and higher-powered (F-HP), flashier and lower-powered (F-LP), more stable and higher-powered (S-HP), and more stable and lower-powered (S-LP). These four categories of Korean streams were related to with the characteristics of environmental variables, such as catchment size, site slope, stream order, and land use patterns. I then applied the models at 684 ungaged biological sampling sites used in the National Aquatic Ecological Monitoring Program in order to classify them with respect to basic hydrologic characteristics and similarity to the government's array of hydrologic gauging stations. Flashier-lower powered sites appeared to be relatively over-represented and more stable-higher powered sites under-represented in the bioassessment data sets.

  • PDF

이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도 (Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis)

  • 권영문;김태웅
    • 대한토목학회논문집
    • /
    • 제29권2B호
    • /
    • pp.155-162
    • /
    • 2009
  • 단변량 빈도해석법은 수공구조물 설계에 널리 사용되고 있다. 하지만 호우사상은 강우량, 최대강우강도, 강우지속기간과 같은 특성으로 표현되기 때문에 단변량 빈도해석법으로는 그 특성을 종합적으로 표현하는데 한계가 있을 수 있다. 이러한 호우사상의 특성들을 함께 표현해 줄 수 있는 이변량 빈도해석법의 사용이 수공구조물의 설계에 필요하다. 본 연구는 서울 강우관측소의 46개년(1961~2006) 시 강우자료를 Gumbel 혼합모형에 적용하여 빈도해석을 수행하였다. 이변량 강우빈도해석을 통해 결합누적분포함수를 산정한 후, 결합재현기간, 그리고 조건부 재현기간을 산정하였다. 이와 같은 이변량 강우빈도해석은 다양한 호우특성들에 대한 확률적 거동에 대한 예측정보를 제공함으로써 수공구조물의 계획 및 설계 그리고 위험도 평가 등의 문제 해결에 유용하게 사용될 수 있다.

지형기후학적 선형저수지 모델에 의한 유출해석 (Runoff Analysis by the Geomorphoclimatic Linear Reservoir Model)

  • 조홍제
    • 물과 미래
    • /
    • 제18권2호
    • /
    • pp.143-152
    • /
    • 1985
  • Horton의 지형법칙을 수문응답의 직접변수로 결합시켜 유출수문곡선을 재현하는 방법을 제시하였다 Itrube 등의 지형학적 순간단위도(Geomorphologic IUH) 이론과 Bras 등의 지형기후학적 순간단위도(Georphoclimatic IUH) 이론을 Sukekawa가 제시한 홍수유출모델에 적용시켜, 지형인자 및 기후특성이 고려된 수문응답함수를 재구성하였다. 분석결과 본 이론의 실제 유역에 대한 적용이 우수하였으며, 유역을 m(1∼4)개의 저수지로 모델화할 때, 유역면적의 대소에 관계없이 유역을 2개의 저수지로 가정한 m=2인 모델이 가장 적합한 것으로 나타났다. 또한 하천 차수법을 이용 유역을 모델화함으로서 본 이론의 확대해석이나 일반화가 이루어질 수 있을 것으로 판단되었다.

  • PDF

관개용저수지 용수공급지수(IRWSI)의 확률통계 분석 (Statistical Analysis of Irrigation Reservoir Water Supply Index)

  • 김선주;이광야;강상진
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.58-66
    • /
    • 1998
  • Irrigation Reservoir Water Supply Index(IRWSI), which can be applied to the effective supply and management of the irrigation water resources, was developed. IRWSI was formulated as resealed nonexceedance probabilities of two hydrologic components : reservoir storage ratio and precipitation. To generate nonexceedance probability of hydrologic component, it was important to define the optimal one among the various probability distribution function in the state of nature. To define an optimal probability distribution, in this study, four types of probability distribution function were tested by the K-S fitting, and for the calculation of IRWSI, reservoir storage ratio(%) and precipitation used Normal distribution & Gamma distribution, respectively. In this study, the weight coefficients of a and b for each hydrologic component, which is precipitation and reservoir storage ratio, was decided as 0.8 and 0.2, respectively. While some studies changed weight coefficients according to the size of basin area, this study used same values without considering that. From the analysis of drought characteristics, it was found that the IRWSI was sensitive to the size of irrigation area rather than the size of basin area, and the south-eastern region of Korea had been suffered from severe drought damage.

  • PDF

소수력발전입지의 수계별 설계변수 특성(II) (Design Parameters of Small Hydro Power Sites for River Systems(II))

  • 박완순;이철형
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.42-47
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites had some difference between the river systems. Especially, the specific design flow and specific output of SHP sites located on North Han river and Nakdong river systems had large difference compared with other river systems.

도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현 (Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model)

  • 길경익;한종옥;김구현
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

수계별 소수력자원의 특성 분석 (Characteristic Analysis of Small Hydro Power Resources for River System)

  • 박완순;이철형
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.235-240
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong darn. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF