• Title/Summary/Keyword: hydrographic conditions

Search Result 48, Processing Time 0.033 seconds

Construction of Hydrographic Pump Dredge Process Management System Based on Beacon DGPS (비콘 DGPS기반 펌프식 해상준설 공정관리시스템의 구축)

  • Lee, Jin-Duk;Lee, Jae-Bin;Kim, Hyun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.613-620
    • /
    • 2011
  • In order to perform scientific evaluation of dredge results, it is needed to construct the system which is able to manage and evaluate the work process by monitoring in real-time the dredge process such as dredge ship position, dredge depth and dredge volume. This research aims to develop the hydrographic dredge surveying system adding water depth measurement method to both precise positioning and navigation methods using GPS, which allows a high rate of measurement and long distances between the control point and dredging points, operate in all weather conditions, and does not require line of sight to points. We constructed Beacon DGPS-based hydrographic dredger guidance and position management system and developed the operation program which makes the dredge operation perform as monitoring work situation in real-time. It is expected that this developed system will be able to contributes to reducing ultimately the cost in hydrographic dredging or hydrographic construction industries.

Hydrographic Model Test on Prevention against Vortex Occurrence for Vertical Bulb Turbine

  • Yamato, Shoichi;Nakamura, Shogo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.418-425
    • /
    • 2009
  • A vertical bulb turbine unit with elbow type draft tube has been developed due to avoidance of complicated assembling and long standstill period at overhaul in comparison with conventional horizontal bulb turbine unit. Before designing the prototype vertical bulb unit, a hydrographic model test was carried out to establish the ideal design concept for this innovative generating unit. Froude similarity is not available for vortex occurrence. Consequently, an intake structure without air entraining vortices under all the flow conditions is developed, and it is confirmed that the surge wave at load rejection is not affected harmful influence for other constructions.

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.

A Study of the Hydrographic Conditions and Tidal Front on the Northern Coastal Area of Cheju Island (제주도 북부연안역의 해황과 조석전선 특성)

  • Kim Sang-Hyun;RHO Hong-Kil;CHOI Chan-Moon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.437-446
    • /
    • 1998
  • The general pattern of the hydrographic conditions and tidal front of the northern coastal area of Cheju Island is investigated using the CTD observation data and a stratification parameter V ($J/m^3$) in $1991\~1993$. 1. The sea water of the northern coastal area of Cheju Island has a lower temperature and higher salinity than that in the central area of the Strait, and local temperature and salinity fronts appears frequently around this area. It seems that they are caused by the upwelling and the tidal front as well as a local topography. 2. A saddle-like distribution of temperature and salinity is formed in the Cheju Strait almost every month with relation to mixing of the different water masses. 3. In the northern coastal area of Cheju Island the stratification parameter V ($J/m^3$) was ranged from 8.4 to 209.8 $J/m^3$ in June, 201.9 to 634.9 $J/m^3$ in August, 0.18 to 680 $J/m^3$ in September, and $2.7\~462\;J/m^3$ in October, respectively. The tidal front was often formed around the place where the horizontal variation of the depth is very large and the potential energy with 10$J/m^3$ appears roughly along 50 m isobath.

  • PDF

Seasonal variation of the zooplankton community of Gamak Bay, Korea

  • Moon, Seong Yong;Kim, Hee Yong;Oh, Hyun Ju
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2020
  • The seasonal variation in the zooplankton community and hydrographic conditions were examined in three regions (inner, central, and outer regions) of Gamak Bay, Korea. Zooplankton samples were collected over a period of 12 months from January to December 2006. The hydrographical parameters of temperature, salinity, chlorophyll-a concentrations, dissolved oxygen, and chemical oxygen demand were measured. The total zooplankton density varied from 411 to 58,485 ind. m-3, with peaks in early summer. A total of 65 taxa accounted for approximately 86.9% of the annual mean zooplankton density: Noctiluca scintillans (30.9%) Paracalanus parvus s. l.(24.3%), Acartia omorii(11.9 %), Eurytemora pacifica (5.7%), cladocerans (4.1%), cirriped larvae (3.8%), Oithona similis (3.7%), and Pseudevedne tergestina(2.5%). Copepods dominated numerically throughout the year and comprised 54.3% of the total zooplankton. Most of the dominant copepods showed a well-defined seasonal pattern. The density and diversity of zooplankton in Gamak Bay were influenced by the hydrographic environment that was subject to significant spatial and temporal variations. Multivariate statistics showed that seasonal temperature was the most significant predictor of zooplankton taxa, density, and diversity, as well as the density of dominant taxa. Our results suggest that fluctuations in the zooplankton populations, particularly copepods, followed progressive increments in the temperature and COD concentrations.

Abnormal Oceanic Conditions Caused by Typhoons Around the Korean Peninsula (태풍에 의해 발생하는 한국근해 해황이상변동)

  • SUH Young-Sang;GU Ji-Young;HWANG Jae-Dong;LEE Na-Kyung;KIM Bok-Kee;JANG Lee-Hyun;KANG Yong-Q;LEE Dong-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.417-429
    • /
    • 2003
  • Abnormal oceanic conditions associated with the passage of typhoons are examined using hydrographic and satellite data 1990-2002. During the passage period of typhoons in the Korean waters, an abrupt decrease of sea surface temperature (SST) in range of 5 to $8^{\circ}C$ was observed. The areas of SST decrease were an order of 100-200 km, and the low SST lasted about 15-25 days after passage of typhoon. After passage of typhoon, the water temperatures in the surface mixed layer of 30 m show negative anomalies for quite a long period. In addition, stratification parameters were substantially decreased and chlorophyll a density was rapidly increased.

Abnormal oceanic conditions around the Korean peninsula caused by typhoons

  • Suh, Young-Sang;Gu, Ji-Young;Hwang, Jae-Dong;Lee, Na-Kyung;Jang, Lee-Hyun;Jeon, Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.640-641
    • /
    • 2003
  • Abnormal oceanic conditions associated with the passage of typhoons are examined using hydrographic and satellite data 1990-2002. During the passage period of typhoons in the Korean waters, an abrupt decrease of sea surface temperature(SST) in range of 5 to 8 $^{\circ}$ was observed. The areas of SST decrease were an order of 100-200km, and the low SST lasted about 15-25 days after passage of typhoon. After passage of typhoon, the water temperatures in the surface mixed layer of 30m show negative anomalies for quite a long period. In addition, stratification parameters were substantially decreased and chlorophyll a density was rapidly increased.

  • PDF

Environmental Feature Causing a Bloom of the Novel Dinoflagellate Heterocapsa circularisquama (Dinophyceae) in Uranouchi Bay, Kochi Prefecture, Japan (일본 Kochi현 Uranouchi만의 와편모조류, Heterocapsa circularisquama (Dinophyceae) 적조발생에 대한 환경 고찰)

  • O, Seok-Jin;Ma,;O,;Mo,;U,
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.281-288
    • /
    • 2003
  • To study the environmental features causing a bloom of the novel dinoflagellate Heterocapsa circularisquama (Dinophyceae), hydrographic and chemical aspects were measured in the Uranouchi Bay, Kochi Prefecture, Japan, from January to December, 1997. The cell density of H. circularisquama increased rapidly in early October, and dropped sharply in mid-October. Growth rate of H, circularisquama during bloom period appeared 1.50 division day$^{-1}$ under high water temperature (25$^{\circ}C$) and salinity (32 psu) conditions. Althought the result from hydrographic aspect indicated good condition for their growth, dissolved inorganic phosphorus (DIP) concentration in surface layer before bloom formation was less than 0.70uM, which is lower than their half saturation constant(Ks). Dissolved inorganic nitrogen(DIN): DIP ratio was > 30, indicating potential P-limitation. However, before bloom formation period of H. circularisquama, DIP concentrations were high in bottom layer (> 4.0 uM). Some studies reported that H. circularisquama had the ability to migrate vertically and to utilize dissolved organic phosphorus (DOP). Thus, DIP in bottom layer might have been utilized by H. circularisquama for their growth.DOP might have weakly affected their growth because of low reactive DOP concentrations owing to low DOP concentration (ca. 0.39 uM). Thus, if nutrient condition of bottom layer in Uranuchi Bay is not improved, the outbreaks of H. circularisquama red tides may became an annual feature.

Estimation of Typhoon Center Using Satellite SAR Imagery (인공위성 SAR 영상 기반 태풍 중심 산정)

  • Jung, Jun-Beom;Park, Kyung-Ae;Byun, Do-Seong;Jeong, Kwang-Yeong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.502-517
    • /
    • 2019
  • Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

Seasonal Variations in Distribution, Population Structure and Prosome Length of Calanus sinicus (Copepoda: Calanoida) in the Southern Waters of Korea

  • Kang, Young-Shil;Hong, Sung-Yun
    • Journal of the korean society of oceanography
    • /
    • v.33 no.1-2
    • /
    • pp.28-34
    • /
    • 1998
  • Variations in abundance, size and population structure of Calanus sinicus were studied in the southern waters of Korea in connection with hydrographic conditions during 1991-1992. Abundance was high in April and low in August. This species was concentrated inshore of a coastal temperature front, or around the temperature front in April. The 1st-3rd copepodites dominated in February and April, and adults in August. The mean population stages in February and April were younger than those in other survey months. This suggests that this species mainly reproduced during winter-early spring. In prosome length, the 1st-4th copepodites were larger in April than in other survey months, and the 5th copepodite and adult were the largest in February. Mean prosome length of C. sinicus showed weak inverse relationship with sea water temperature, but it was not statistically evidenced.

  • PDF