• 제목/요약/키워드: hydrogen storage materials

검색결과 260건 처리시간 0.026초

기체분무형 공정으로 제조된 Zr계 금속수소화물의 수소화반응 및 Ni-MH 2차전지 전극 특성에 관한 연구 (Hydrogneation and Electrochemical Characteristics of Gas-atomized Zr-based $AB_2$ Hydride for Ni-MH Secondary Battery)

  • 김진호;황광택;김병관;한정섭
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.505-511
    • /
    • 2009
  • The hydriding and electrochemical characteristics of Zr-based $AB_2$ alloy produced by gas atomization have been extensively examined. For the particle morphology of the as-cast and gas-atomized powders, it can be seen that the mechanically crushed powders are irregular, while the atomized powder particles are spherical. The increase of jet pressure of gas atomization process results in the decrease of hydrogen storage capacity and the slope of plateau pressure significantly increases. TEM and EDS studies showed the increase of jet pressure in the atomization process accelerated the phase separation within grain of the gas-atomized alloy, which brought about a poor hydrogenation property. However, the gas-atomized $AB_2$ alloy powders produced by jet pressure of 50 bar kept up the reversible $H_2$ storage capacity and discharge capacity similar to the mechanically crushed particles. In addition, the electrode of gas-atomized Zr-based $AB_2$ alloy of 50 bar showed improved cyclic stability over that of the cast and crushed particulate, which is attributed to the restriction of crack propagation by grain boundary and dislocation with ch/discharging cycling.

독성 화학물질 누출사고 대응 기술연구 - 불산 및 암모니아 누출을 중심으로 - (A Study on the Response Technique for Toxic Chemicals Release Accidents - Hydrogen Fluoride and Ammonia -)

  • 윤영삼;조문식;김기준;박연신;황동건;윤준헌;최경희
    • 한국위험물학회지
    • /
    • 제2권1호
    • /
    • pp.31-37
    • /
    • 2014
  • Since the unprecedented hydrogen fluoride leak accident in 2012, there has been growing demand for customized technical information for rapid response and chemical accident management agencies including the Ministry of Environment, the National Emergency Management Agency, and the National Police Agency need more information on chemicals and accident management. In this regard, this study aims to provide reliable technical data and guidelines to initial response agencies, similar to accident management technical reports of the US and Canada. In this study, we conducted a questionnaire survey and interviews on initial response agencies like fire stations, police stations, and local governments to identify new information items for appropriate initial response and improvements of current guidelines. We also collected and reviewed the Canada's TIPS, US EPA's hydrogen fluoride documents, domestic and foreign literature on applicability tests of control chemicals, and interview data, and then produced items to be listed in the technical guidelines. In addition, to establish database of on-site technical information, we carried out applicability tests for accident control data including ① emergency shut down devide, safety guard, shut down valve, ground connection, dyke, transfer pipe, scrubber, and sensor; ② literature and field survey on distribution type and transportation/storage characteristics (container identification, valve, ground connection, etc.); ③ classification and identification of storage/transportation facilities and emergency management methodslike leak prevention, chemicals control, and cutoff or bypass of rain drainage; ④ domestic/foreign analysis methods and environmental standards including portable detection methods, test standards, and exposure limits; and ⑤ comparison/evaluation of neutralization efficiency of control chemicals on toxic substances.

Ni Nanoparticles이 doping된 Multiwall Carbon Nanotubes의 수소저장 특성에 관한 연구 (Hydrogen Storage in Ni Nanoparticles-Dispersed Multiwall Carbon Nanotubes)

  • 이호;김진호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.74-82
    • /
    • 2002
  • Ni nanoparticles이 표면에 분산된 mutiwall carbon nanotubes (MWNTs)의 수소저장 특성을 분석하였다. Metal nanoparticles의 분산 방법은 incipient wetness impregnation procedure을 사용하였는데, 이러한 Ni catalysts의 역할은 기존에 알려진 Li, K doping과 같은 개념으로 기상의 수소를 분해하여 carbon 표면에 chemical adsorption 시키는 역할을 하게 된다. 실제로 Ni nanoparticles이 6wt% loading된 경우에는 thermal desorption spectra를 분석한 결과 ~2.8wt% hydrogen이 ~340-520K의 온도범위에서 방출되는 것을 관찰할 수 있었다. Kissingers plot을 통해서 MWNTs와 hydrogen과 interaction energy를 구한 결과 ${\sim}31kJ/molH_2$를 얻을 수 있었으며 이 값은 기존의 SWNTs에 hydrogen이 physi-sorption에서 실험적으로 얻을 수 있었던 값보다 1.5배 큰 값이라고 할 수 있다. 자세한 수소저장 기구를 분석하기 위해서 FT-IR분석을 한 결과 C-Hn stretching vibrations이 관찰되었으며 mono-hydride와 weak di-hydride $sp^3$가 형성된 것으로 해석 될 수 있었다. 이와 같은 결과는 Ni nanoparticle들이 예상과 같이 hydrogen molecules을 dissociation하는 역할을 하는 것을 의미한다. 연속적인 thermal desorption 실험을 통해 가역성도 평가하였다.

Magnetic refrigerator for hydrogen liquefaction

  • Numazawa, T.;Kamiya, K.;Utaki, T.;Matsumoto, K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.1-8
    • /
    • 2013
  • This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

액화수소 수송용 진공자켓 밸브의 진공도에 따른 열적특성에 대한 연구 (A Study on the Thermal Characteristics of the Vacuum Jacket Valve for Transporting Liquefied Hydrogen According to the Degree of Vacuum)

  • 오승준;전경숙;윤정환;최정주
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.585-591
    • /
    • 2021
  • Liquefied hydrogen have advantage which reduces the volume by about 800 times or more compared to hydrogen gas, so it is possible to increase the storage density. However, liquefied hydrogen produced by cryogenic cooling of 20 K or less at normal pressure has a problem of maximizing the insulation effect that blocks heat introduced from the outside. Representative insulation technologies include vacuum insulation and multi-layer insulation materials and in general, heat blocking is attempted by combining insulation technologies. Therefore, in this study, the pressure of the internal vacuum layer was changed to 10-1, 10-2, 10-3 and 10-4 Torr to confirm the thermal insulation performance of the vacuum jacket valve for transporting liquefied hydrogen. As a result, it was confirmed that the insulation performance improved as the degree of vacuum increased.

기계적 합금처리와 수소화물 형성·분해 싸이클링이 Mg의 수소 저장성질에 미치는 영향 (Influence of Mechanical Alloying and Hydriding-Dehydriding Cycling on the Hydrogen-Storage Properties of Mg)

  • 송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제9권4호
    • /
    • pp.151-160
    • /
    • 1998
  • 기계적으로 합금처리한 혼합물 속에 포함된 Mg의 수소 저장 성질의, 시료 내의 Ni의 중량 백분율에 따른 변화를 조사하였다. Ni 중량을 기준으로 한, Mg2Ni 상을 형성한 Ni의 중량 백분율은 Mg-10wt.%Ni 시료에서 가장 높다. 첫번째 수소화물 형성 싸이클에서, Mg의 수소화물 형성 속도에 미치는 기계적 합금처리의 효과는 Mg-25wt.%Ni 시료에서 가장 높다. 활성화 후에는, 기계적 합금처리와 수소화물 형성 분해 싸이클링이 Mg의 수소화물 형성 속도에 미치는 효과는 Mg-10wt.%Ni 시료에서 가장 높다. 충분한 수소화물 형성 분해 싸이클링 후에는 Mg의 수소 저장 용량에 미치는 효과는 Mg-10wt.%Ni에서 가장 높다. Mg의 수소화물 형성 속도와 분해 속도에 미치는 효과는 Mg-25wt.%Ni 시료에서 가장 높다. 시료 내에 포함된 Mg의 수소 저장 성질에 가장 좋은 효과를 가지고 있는 최적의 조성은 Mg-25wt.%Ni이고 그 다음이 Mg-10wt.%Ni이다. 기계적 합금 처리와 수소화물 형성 분해 싸이클링은, 활발한 핵 생성 자리 역할을 할 수 있는 많은 결함을 만들고, 비 표면적을 증가시켜 수소의 확산 거리를 짧게한다.

  • PDF

TiFe금속간 화합물의 Zr과 Ce첨가와 냉각속도에 따른 응고 조직 변화 및 기계적 특성 (Microstructure and Mechanical Property of TiFe Compounds with Zr or Ce Prepared at Different Solidification Rates)

  • 노혜인;최창완;이승훈
    • 한국주조공학회지
    • /
    • 제39권2호
    • /
    • pp.21-25
    • /
    • 2019
  • Microstructural and corresponding hardness changes of TiFe compounds with Zr (0~6 at%) or Ce (0~3 at%) were studied using samples prepared at different solidification rates. In arc-melted (TiFe)-Zr samples, the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases formed in the TiFe matrix, while in the (TiFe)-Ce sample, the $CeO_2$ phase formed along the grain boundary of the TiFe matrix. As the Zr content was increased, the volume fractions of the $Fe_{23}$ $Zr_6$ and $(Ti,\;Zr)_2Fe$ phases increased, forming a network structure. Accordingly, the hardness values of the samples also increased. With a small addition of Ce of approximately 0.1 at%, the as-cast microstructure could be effectively refined, reducing the average grain boundary diameter from ${\sim}100{\mu}m$ to ${\sim}14{\mu}m$. In the rapidly solidified sample prepared through a melt-spinning method, the constituent phases were identical to those of the arc-melted samples while the grains were refined. The microstructural changes of TiFe alloys can affect the hydrogen storage ability as well as the mobility of the hydrogen atoms in the alloys.

Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding

  • Song, Myoung Youp;Lee, Seong Ho;Kwak, Young Jun;Park, Hye Ryoung
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.129-134
    • /
    • 2014
  • Pure $MgH_2$ was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the $MgH_2$ after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar $H_2$. The initial hydriding rate of $MgH_2$ after RMG at 423 K under 12 bar $H_2$ was the highest (0.08 wt% H/min) at n = 2. At n = 2, the $MgH_2$ after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar $H_2$. At 573 K under 12 bar $H_2$, the $MgH_2$ after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar $H_2$, the $MgH_2$ after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the $MgH_2$ after RMG at a relatively low temperature of 423 K.

생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구 (A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater)

  • 김상규;유동진
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.