Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.3.129

Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding  

Song, Myoung Youp (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University)
Lee, Seong Ho (Department of Materials Engineering, Graduate School, Chonbuk National University)
Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University)
Park, Hye Ryoung (Faculty of Applied Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.24, no.3, 2014 , pp. 129-134 More about this Journal
Abstract
Pure $MgH_2$ was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the $MgH_2$ after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar $H_2$. The initial hydriding rate of $MgH_2$ after RMG at 423 K under 12 bar $H_2$ was the highest (0.08 wt% H/min) at n = 2. At n = 2, the $MgH_2$ after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar $H_2$. At 573 K under 12 bar $H_2$, the $MgH_2$ after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar $H_2$, the $MgH_2$ after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the $MgH_2$ after RMG at a relatively low temperature of 423 K.
Keywords
pure magnesium hydride; activation; hydriding rate; microstructure; X-ray diffraction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, 7(10), 787 (1982).   DOI   ScienceOn
2 S. H. Hong, S. N. Kwon, and M. Y. Song, Kor. J. Met. Mater., 49(4), 298 (2011).
3 K. I. Kim and T. W. Hong, Kor. J. Met. Mater., 49(3), 264 (2011).   DOI   ScienceOn
4 J. J. Reilly and R. H. Wiswall, Inorg. Chem., 6(12), 2220 (1967).   DOI
5 J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem., 7(11), 2254 (1968).   DOI
6 M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem., 40(5), 765 (1978).   DOI   ScienceOn
7 H. C. Zhong, H. Wang, L. Z. Ouyang and M. Zhu, J. Alloys Compd., 509(11), 4268 (2011).   DOI   ScienceOn
8 Z. Li, X. Liu, L. Jiang and S. Wang, Int. J. Hydrogen Energy, 32(12), 1869 (2007).   DOI   ScienceOn
9 J. M. Boulet and N. Gerard, J. Less-Common Met., 89(1), 151 (1983).   DOI   ScienceOn
10 M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea and V. Tsakiris, J. Alloys Compd., 488(1), 163 (2009).   DOI   ScienceOn
11 Z. Li, X. Liu, Z. Huang, L. Jiang and S. Wang, Rare Metals, 25(6) (Supplement 1), 247 (2006).   DOI   ScienceOn
12 S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu and A. K. Dahle, Int. J. Hydrogen Energy, 36(1), 571 (2011).   DOI   ScienceOn
13 C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi and A. Marini, Intermetallics, 18(2), 203 (2010).   DOI   ScienceOn
14 J. Cermak and B. David, Int. J. Hydrogen Energy, 36(21), 13614 (2011).   DOI   ScienceOn
15 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull., 11(11), 1441 (1976).   DOI   ScienceOn
16 J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu and J. Ni, Int. J. Hydrogen Energy, 35(10), 4569 (2010).   DOI   ScienceOn
17 D. Chen, Y. M. Wang, L. Chen, S. Liu, C. X. Ma and L. B. Wang, Acta Materialia, 52(2), 521 (2004).   DOI
18 L. Matovi , S. Kurko, Z. Raskovi -Lovre, R. Vujasin, I. Milanovi , S. Milosevi and J. Grbovi Novakovi , Int. J. Hydrogen Energy, 37(8), 6727 (2012).   DOI
19 M. Y. Song, Y. J. Kwak, S. H. Lee, H. R. Park, and B. G. Kim, Met. Mater. Int., 19(4), 879 (2013).   DOI   ScienceOn
20 M. Y. Song, S. H. Baek, J. -L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy, 35(19), 10366 (2010).   DOI   ScienceOn
21 M. Y. Song, Y. J. Kwak, B. S. Lee, H. R. Park and B. G. Kim, Kor. J. Met. Mater., 49(12), 989 (2011).
22 P. Pei, X. Song, J. Liu, A. Song, P. Zhang and G. Chen, Int. J. Hydrogen Energy, 37(1), 984 (2012).   DOI   ScienceOn
23 J. -L. Bobet, B. Chevalier, M. Y. Song, B. Darriet, J. Alloys Compd., 356-357, 570 (2003).   DOI   ScienceOn
24 Y. H. Cho, S. Aminorroaya, H. K. Liu and A. K. Dahle, Int. J. Hydrogen Energy, 36(8), 4984 (2011).   DOI   ScienceOn
25 M. Y. Song, S. H. Baek, J. -L. Bobet, H. R. Park, and B. G. Kim, Met. Mater. Int., 19(2), 237 (2013).   DOI
26 F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met., 74(2), 323 (1980).   DOI   ScienceOn