• Title/Summary/Keyword: hydrogen refueling

검색결과 104건 처리시간 0.021초

수소운송설비 안전성 강화 방안 고찰 (A Study on the Safety Enhancement of Hydrogen Tube Trailer)

  • 박우일;김영훈;이인우;강승규
    • 한국가스학회지
    • /
    • 제26권6호
    • /
    • pp.59-64
    • /
    • 2022
  • 현재 수소운송설비는 2022년 10월 말 기준 787대가 운행 중이며, Type 1 이음매 없는 용기에 최대 200 bar의 압력으로 1회 최대 340 kg을 운송한다. 현재 안전관리체계 및 설비관리는 양호한 상태이나, 안전성 강화를 위해 제도 및 설비 구조개선이 필요한 실정이다. 이에 따라, 본 논문은 수소에너지 활성화 정책에 의해 수소운송설비 보급·운영의 확대 과정 중 지난 2021년 12월 28일 대전-당진간 고속도로에서 발생한 사고사례를 모사 및 해석을 진행하였으며, 사고 분석 및 해석 결과에 따라 수소운송설비의 안전성 향상 방안에 대해 제언하였다.

휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석 (3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN)

  • 카칸 발루치;신찬휘;조용돈;조상호
    • 화약ㆍ발파
    • /
    • 제40권3호
    • /
    • pp.19-32
    • /
    • 2022
  • 수소는 다른 연료에 비해 에너지효율이 높고 유해물질이 배출되지 않아 미래의 청정에너지원으로 인식되고 있다. 그러나 수소는 밀도가 낮아 운반 및 저장시에 부피가 커서 압축하거나 특별한 운반체를 사용해야 하며, 공기중에 노출 시 화재나 폭발의 위험성이 있다. 수소-공기 혼합물의 폭발에 관한 실험이나 수치해석적 연구가 진행되어 오고 실물 수소 충전소를 대상으로 한 폭발 시뮬레이션에 관한 연구사례는 극히 드물다. 본 연구에서는 실제 수소 충전소를 대상으로 Lidar 스캐닝을 수행하여 point cloud 데이터를 획득하고 수소 충전소 3 차원 구조 모델을 작성한다. 3 차원 구조모델은 Ansys 사 AUTODYN 에 적용되어 수소 충전소의 수소폭발을 가정한 TNT 등가량의 폭발 시뮬레이션을 실시하고 주변에 전파하는 폭발압력을 계산하여, 수소 충전소 폭발에의한 주변 보안 건물의 안전거리에 관한 정보를 제공한다.

창원시 수소버스 운행에 따른 수소소비 현황 및 보급 활성화 방안 (Current Status of Hydrogen Consumption and Promotion Plan for the Deployment of Fuel Cell Bus in Changwon City)

  • 강부민;강영택;김민우;이상현;박민주;정창훈;정대운
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.479-484
    • /
    • 2019
  • Environmental problems were related to human life from second industrial revolution. Recently, peoples are interested in solving global warming problem and improving air quality. Therefore, we request for eco-friendly vehicles such as fuel cell electric vehicles using eco-friendly hydrogen energy. In order to reduce particulate matter in Korea, we have established a plan to promote the deployment of eco-friendly vehicles. In this paper, we analyzed the average monthly charging status and hydrogen consumption by introducing fuel cell bus.

Type 2 고압용기 권선용 금속선재에 관한 연구 (A Study on the Metal Wire for Hoop Wrapping of Type 2 High Pressure Tank)

  • 한진목;최수광;이성희;조경철;황철민;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.338-346
    • /
    • 2019
  • During last years, hydrogen refueling infrastructure test and devices research for hydrogen station presented a significant growth consisting of the commercialization of fuel cell electric vehicles (FCEVs). However, we still have many challenges for making commercial hydrogen stations such as increased safety and cost reduction. This study demonstrates the low cost hydrogen storage tank (type 2) and effective winding method for high pressure hydrogen storage. We use numerical analysis to verify stress changes inside the wire according to the winding condition. Also liner size, winding wire size and wire tension were studied for the safety and cost down. Results show that the stress of winding wire decreased with increased winding angle and increased the liner diameter. On the other hand, the stress of winding wire increased according to the increased wire thickness and tension.

시내버스용 HCNG 고압가스 충전소의 폭발 위험성 해석 (Risk Assessment of High Pressure HCNG Refueling Station Explosion by Numerical Simulation)

  • 강승규;김영구;최슬기;권정락
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.113-113
    • /
    • 2014
  • This study has been conducted for evaluation of qualitative/quantitative risk of HCNG filling station. In case of fire explosion occurred because of hydrogen, CNG, and HCNG leaking on same conditions, maximum overpressure was measured as 30kPa for hydrogen, 3.5kPa for HCNG, and 0.4kPa for CNG. The overpressure of HCNG was measured 7.75 times higher than that of CNG, but it was only 11.7% compared with hydrogen. When the explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. As the explosion occurred with the same sized container that had 350bar for hydrogen and 250bar of CNG and HCNG, the damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

  • PDF

수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계 (Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations)

  • 안승효;오세현;김은희;이준서;마병철
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.

국내·외 충전소 사고 현황 분석 및 가스누출 피해거리 평가 (Accidents Analysis of Domestic and Overseas Refueling Stations and Assessment of Dangerous Distance by Gas Leak)

  • 김혜림;강승규;허윤실
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.7-13
    • /
    • 2017
  • 환경문제가 생존문제로까지 부각되면서 대기환경 개선을 위해 친환경에너지에 대한 관심이 높아져 그에 따른 환경 친화적 연료인 수소, LPG, CNG에 대한 수요가 점차 증가하고 있는 추세이다. 특히, 대부분의 연료를 수입에 의존하고 있는 우리나라의 경우 높은 생산량과 에너지 자립적 측면에서 유리한 위치에 있는 수소 에너지의 개발에 투자를 아끼지 않고 있는 상황이다. 하지만 매년 증가하고 있는 수요만큼 작은 누출사고부터 대형 화재 폭발사고까지 충전소사고 또한 다양하게 발생하고 있기 때문에 그에 대한 연구가 필요하다. 따라서 본 연구에서는 국내 외 충전소에서 발생하는 수소, LPG, CNG의 사고 사례들을 비교 분석하였고 위험성평가를 위한 다양한 프로그램을 사용해 가스누출에 의한 피해거리를 예측하고 위험거리를 평가하였다.

위험성 평가를 통한 패키지형 수소충전소 안전성 향상에 관한 연구 (A Study on Safety Improvement for Packaged Hydrogen Refueling Station by Risk Assessment)

  • 강승규;허윤실;문종삼
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.635-641
    • /
    • 2017
  • In this study, the components of packaged hydrogen filling station were analyzed and risk factors were examined. Risk scenarios were constructed and quantitative risk assessments were conducted through a general risk assessment program (phast/safeti 7.2). Through the risk assessment, the range of damage according to accident scenarios and the ranking that affects the damage according to the risk factors are listed, and scope of damage and countermeasures for risk reduction are provided. The quantitative risk assessment result of the packaged hydrogen filling station through this task will be used as the basic data for improving the safety of the packaged filling system and preparing safety standards.

FCEV 충전 시스템 체크밸브의 수소 유입 극한 온도 조건에 따른 유동 성능 인자 분석 (Analysis of Flow Performance Factors According to Extreme Temperature Conditions of Hydrogen Inflow of FCEV Charging System Check Valve)

  • 오승훈;서현규
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.514-525
    • /
    • 2023
  • This study conducted numerical simulations with the purpose of analyzing the impact of variations in outlet pressure conditions under extreme temperature conditions on the fluid dynamics and performance of a check valve utilized in hydrogen refueling systems. Under the extreme temperature conditions, changes in outlet pressure conditions of the check valve were investigated to analyze velocity distributions, pressure distributions, and temperature distributions in the operational and connection regions. The analysis results indicated that changes in outlet pressure had a significant influence on the internal temperature variation of the check valve. Furthermore, due to density variations in the connection region caused by the cooling effect of excessively cooled hydrogen, a bias in the primary flow direction towards the lower part of the valve outlet was observed in the outlet area. Through a comparison of the results of the valve's inherent flow performance, represented by the flow coefficient, it was observed that when the pressure difference between the inlet and outlet was below 0.37 MPa, sufficient flow was not ensured.

국내 수소충전소의 적정 용량 분석 (Study on the Optimum Capacity Analysis for Hydrogen Fueling Station in Korea)

  • 한자령;박진모;이영철;김상민;전소현;김형식
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.649-656
    • /
    • 2017
  • At present, hydrogen is emerging as a future energy source based on environment-friendly aspect, creation of new industry, and enhancement of domestic energy security. In accordance with it, the world's leading automobile companies are focusing on the development and commercialization of hydrogen electric vehicle technology, and each country is strengthening its hydrogen fueling station deployment strategy for its own country. Furthermore, the supply of hydrogen fueling stations is actively promoting under national support. More than 500 hydrogen fueling stations are being constructed, operated and planned around the world. The introduction of hydrogen energy is also progressing in Korea, by announcing road-map to supply hydrogen electric vehicles and hydrogen fueling stations by year. However, there is insufficient discussion on the capacity of hydrogen fueling station in Korea. Therefore, this study suggests the optimum capacity of hydrogen fuelling station for domestic hydrogen economy.