• Title/Summary/Keyword: hydrogen peroxide stress

Search Result 511, Processing Time 0.023 seconds

Antioxidant Effect of Paeonia Japonica Extracts on Mouse Embryonic Fibroblast Cells (백작약 에탄올 추출물이 mouse embryonic fibroblast cells에 미치는 항산화 효과)

  • Yoon, Hee-Jung;Go, Eun-Bi;Choi, Min-Sun;Kim, Dong-Il;Sung, Jung-Suk
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.2
    • /
    • pp.78-88
    • /
    • 2012
  • Objectives: Paeonia japonica has been widely used for gynecopathy and analgesic effects in Korean Traditional Medicine. The aim of the present study is to determine the antioxidant effect of Paeonia japonica extracts(PJE) by using mouse embryonic fibroblast cells(MEF cells). Methods: We evaluated Radical Scavenging Activity of PJE by the DPPH assay. Protective effect of the PJE on the hydrogen peroxide($H_2O_2$) induced oxidative damage of MEF cells was analyzed by the MTT assay. The Morphological changes of MEF cells induced by P. japonica, $H_2O_2$ and P. japonica+$H_2O_2$ was evaluated by DAPI staining. And effect of PJE on the rate of apoptosis in MEF cells was measured using flow cytometry with Annexin V-FITC and PI double staining. Results: We observed that PJE contain significant DPPH radical scavenging activity. Cell viability of oxidative damaged cells treated with various concentrations of $H_2O_2$ was increased by treatment with PJE. Flow cytometric analysis of the cells treated with $H_2O_2$ in the absence or presence of PJE showed that the crumbled G1 peak was accumulated by the treatment with $H_2O_2$ alone, but restored by addition of PJE. Portion of cells that undergo apoptosis mediated by oxidative stress was decreased by treatment of PJE. The nuclear fragmentation occurred in the oxidative damaged MEF cells was also decreased by PJE treatment. Conclusions: Taken together, our results suggest that PJE exhibits significant antioxidant activity and functions to inhibit cell death mediated by oxidative damage induced apoptotic pathways.

Comparative Study on the Inhibition Effect on Apoptosis in Neuro2A Cell on the Region of Zizania Latifolia(Radix, Rhizoma, Herba) (고장초의 부위별(뿌리, 줄기, 전초) Neuro2A 신경세포고사에 대한 억제 효과 비교 연구)

  • Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.936-941
    • /
    • 2006
  • To prevent human body injury from oxidative stress, antioxidants are very important and many research about antioxidants are generally being conducted. Hydrogen peroxide$(H_20_2)$ that is one of vitality oxygen species has been seen that cause various diseases, DNA damage and gene change. We have already known that the inhibition effect of Zizania latifolia Radix, Rhizoma on apoptosis induced by $H_2O_2$ in Neuro2A cell. And the purpose of this study was that we made a comparative study on the inhibition effect of apoptosis in Neuro2A cell on the region of Zizania latifolia(Radix, Rhizoma, Herba). Neuro2A cells were cultivated in RPMI(GibcoBRL) with 5% FBS and treated with $H_2O_2$ and Zizania latifolia(Radix, Rhizoma, Herba). Separately we measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined by using western blot. The results obtained were as Follows: The cell viability in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment (60ug/m1<) decreased significantly compared with that of none treatment(p<0.001). Zizania latifolia Radix increased cell viability was most effective of three regions. But we had no significant difference among three regions. All of Zizania latifolia (Radix, Rhizoma, Herba) increased cell viability about twice as much as that being injury by $H_2O_2$,(Zizania Latifolia (Radix, nhizoma, Herba) 20ug/m1, $H_2O_2$ 200uM, p<0.001). DNA fragmentation developed by $H_2O_2$, but was not developed in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment. P53, P2l and Bax activated by $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in all of Zizania latifolia (Radix, Rhizoma, Herba) treatment. In conclusion, these results suggest that all of Zizania latifolia (Radix, Rhizoma, Herba) inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$and the antioridant action of all of Zizania latifolia (Radix, Rhizoma, Herba) is effective.

Molecular Cloning and Expression of a Cu/Zn-Containing Superoxide Dismutase from Thellungiella halophila

  • Xu, Xiaojing;Zhou, Yijun;Wei, Shanjun;Ren, Dongtao;Yang, Min;Bu, Huahu;Kang, Mingming;Wang, Junli;Feng, Jinchao
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Superoxide dismutases (SODs) constitute the first line of cellular defense against oxidative stress in plants. SODs generally occur in three different forms with Cu/Zn, Fe, or Mn as prosthetic metals. We cloned the full-length cDNA of the Thellungiella halophila Cu/Zn-SOD gene ThCSD using degenerate RT-PCR and rapid amplification of cDNA ends (RACE). Sequence analysis indicated that the ThCSD gene (GenBank accession number EF405867) had an open reading frame of 456 bp. The deduced 152-amino acid polypeptide had a predicted molecular weight of 15.1 kDa, an estimated pI of 5.4, and a putative Cu/Zn-binding site. Recombinant ThCSD protein was expressed in Escherichia coli and assayed for SOD enzymatic activity in a native polyacrylamide gel. The SOD activity of ThCSD was inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide, confirming that ThCSD is a Cu/Zn-SOD. Northern blotting demonstrated that ThCSD is expressed in roots, stems, and leaves. ThCSD mRNA levels increased by about 30-fold when plants were treated with sodium chloride (NaCl), abscisic acid (ABA), and indole-acetic acid (IAA) and by about 50-fold when treated with UVB light. These results indicate that ThCSD is involved in physiological pathways activated by a variety of environmental conditions.

Neuroprotective effects of phenolic compounds isolated from Spiraea prunifolia var. simpliciflora (조팝나무(Spiraea prunifolia var. simpliciflora)로부터 분리한 페놀 화합물의 신경세포 보호효과)

  • Oh, Seon Min;Choi, Doo Jin;Kim, Hyoung-Geun;Lee, Jae Won;Lee, Young-Seob;Lee, Jeong-Hoon;Lee, Seung-Eun;Kim, Geum-Soog;Baek, Nam-In;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.397-403
    • /
    • 2018
  • The leaves of Spiraea prunifolia were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and $H_2O$ fractions. The repeated $SiO_2$ or ODS column, and medium pressure liquid chromatographies for the n-BuOH fraction led to isolation of two phenolic glucosides. The chemical structures of these compounds were determined as isosalicin (1) and crenatin (2) based on spectroscopic analyses including Nuclear magnetic resonance and MS. Extracts were analyzed using UPLC-MS/MS providing a short analysis time within 5 min using MRM technique. The concentration of crenatin was higher as 9.53 mg/g and isosalicin was lower as 0.65 mg/g. Neuroprotective effects of these compounds against hydrogen peroxide ($H_2O_2$)-induced neurotoxicity were evaluated. The results showed that exposure to $H_2O_2$ induced morphological changes, cell death and neurotoxicity in SK-N-MC cells. However, pretreatment with crenatin resulted in inhibition of morphological change, reduction of loss of cell viability and attenuation of neuronal damage. These results suggested that neuroprotective effect of crenatin isolated from S. prunifolia can be a good candidate for the development of health beneficial foods which can ameliorate the degenerative neuronal disease caused by oxidative stress.

Antioxidant and Anti-inflammatory Effects of Ethanol Extract of Aster yomena in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 쑥부쟁이 추출물의 항산화 및 항염증 효능에 관한 연구)

  • Kim, Sung Ok;Jeong, Ji-Suk;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.977-985
    • /
    • 2019
  • Aster yomena (Kitam.) Honda is an edible vegetable and perennial herb belonging to the Asteraceae family, and has been used for a long time for the prevention and treatment of various diseases. Although leaf extracts of A. yomena are known to have antioxidant and anti-inflammatory effects, accurate efficacy assessments are still inadequate. In this study, we investigated whether the antioxidant efficacy of ethanol extract of A. yomena leaf (EEAY) is correlated with the anti-inflammatory effect in RAW 264.7 macrophages. The results showed that EEAY significantly inhibited the hydrogen peroxide ($H_2O_2$)-induced growth inhibition in RAW 264.7 cells, which was associated with increased expression of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1). EEAY pretreatment also effectively prevented $H_2O_2$-induced reactive oxygen species generation and apoptosis through inhibition of caspase-3 activation and poly (ADP-ribose) polymerase degradation. Additionally, EEAY significantly increased the expression and production of interleukin-10, a representative anti-inflammatory cytokine, which was associated with increased expression of toll-like receptor 4 and myeloid differentiation factor 88 at transcriptional and translational levels. Furthermore, the increased production of nitric oxide (NO) by lipopolysaccharide was markedly abolished under the condition of EEAY pretreatment, and the inhibitory effect of NO production by EEAY was further increased by hemin, an HO-1 inducer. Overall, our results suggest that EEAY is able to activate the Nrf2/HO-1 signaling pathway to protect RAW 264.7 macrophages from oxidative and inflammatory stress.

Neuroprotective effect of Deodeok (Codonopsis lanceolata) bud extracts in H2O2-stimulated SH-SY5Y cells (더덕순 에탄올 추출물의 신경세포 보호 효과)

  • Hee Sun Yang;In Guk Hwang;Ae-jin Choi;Jeong-sook Choe
    • Journal of Nutrition and Health
    • /
    • v.56 no.2
    • /
    • pp.140-154
    • /
    • 2023
  • Purpose: Deodeok (Codonopsis lanceolata) is generally used in conventional medicines and is considered to have remedial properties to cure several diseases. However, application of the C. lanceolata bud as a novel food ingredient has not been fully explored. Hydrogen peroxide (H2O2) is associated with the production of oxidative damage that results in mutagenesis, carcinogenesis, and cell death. This study examines the neuroprotective effect of C. lanceolate bud extracts (CLBE) on H2O2-stimulated apoptosis in SH-SY5Y cells. Methods: C. lanceolata bud of length 10 to 15 cm was collected and extracted using 70% ethanol. Cytotoxicity was evaluated by the EZ-cytox reagent, measurement of lactic dehydrogenase (LDH) release and reactive oxygen species (ROS). The morphological changes of the nuclei were determined using the Hoechst 33258 dye. Enzyme activities were analyzed using the caspase activity assay kit. Related protein expressions were quantified by the Western blot immunoassay in H2O2-stimulated SH-SY5Y cells. Results: Cell viability, LDH release and ROS generation, demonstrated neuroprotective effects of CLBE in H2O2-stimulated SH-SY5Y cells. The occurrence of apoptosis in H2O2-stimulated cells was confirmed by caspase activity, which was increased in H2O2-stimulated SH-SY5Y cells compared to the unexposed group. Pretreatment of CLBE was observed to inhibit the H2O2-stimulated apoptosis. In addition, exposure to CLBE resulted in increased expression of the Bcl-2 (B cell lymphoma 2) protein and decreased expression of the Bax (Bcl2 associated X) protein. Conclusion: This study shows that exposure to CLBE alleviates the H2O2-stimulated neuronal damage in SH-SY5Y cells. Our results indicate the potential application of CLBE in neurodegenerative disease therapy or prevention.

Anti-inflammatory and Anti-oxidative Activities for Extract of Fermented Ligustrum japonicum Fruits (광나무 열매 발효 추출물의 항염 및 항산화 활성)

  • Jung Eun Kim;So Hee Kim;Mi Ae Kim;Mi Sun Ko;Chan Seong Shin;Nam Ho Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • In this study, the anti-inflammatory and anti-oxidative activities were compared for the extracts of non-fermented Ligustrum japonicum fruits (LJF) and fermented counterparts. U se of Latilactobacillus curvatus (L. curvatus) and Weissella minor (W. minor), isolated from the Jeju Chromis notata, as fermented strains led to the extracts of LJF-LC and LJF-WM in this experiment. The yield of each fermented extract (LJF-LC and LJF-WM) was 40.5 ~ 46.0%, higher than 29.5% of non-fermented extract (LJF). As a result of an activity experiment using RAW 264.7 macrophages stimulated by lipopolysaccaride (LPS), it was confirmed that LJF-WM, a fermented extract, has an excellent effect of inhibiting NO production in a concentration-dependent manner without cytotoxicity. Upon the screening of DPPH and ABTS+ radical scavenging activities, the fermented LJF-LC and LJF-WM showed comparable to the non-fermented LJF. In the study of cell protection effect using HaCaT keratinocytes damaged by hydrogen peroxide (H2O2), the fermented LJF-WM indicated protective effect against oxidative stress. In addition, quantitative analysis of a major constituent salidroside by HPLC indicated about 15.6 mg/g for the LJF-LC and 13.9 mg/g for the LJF-WM, which were higher than that of non-fermented LJF (12.0 mg/g). Based on these results, it was suggested that the fermented extract from L. japonicum fruits could be used as a natural cosmetics material with anti-inflammatory and anti-oxidative effects.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Anti-inflammatory, Anti-bacterial and Anti-oxidant Activities for Subcritical Extract of Chamaecyparis obtusa (편백 잎 아임계 수 추출물의 항염, 항균 및 항산화 활성)

  • Jung Eun Kim;Min Jeong Kim;Ji Young Moon;Jeong Mi Kim;Tae Heon Oh;Nam Ho Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.543-554
    • /
    • 2024
  • In this study, the anti-inflammatory, anti-bacterial and anti-oxidative activities of subcritical water extract from Chamaecyparis obtusa leaves was compared with hot water extract. The yield of subcritical water extract (165℃ and 180℃, 80 bar) was 39.4~48.5%, higher than 31.5% of hot water extract. In the anti-inflammatory tests using lipopolysaccaride (LPS)-induced RAW264.7 macrophages, the subcritical water extract concentration-dependently inhibited production of nitric oxide (NO) without causing cell toxicity. Upon the anti-bacterial studies using Cutibacterium acnes and Staphylococcus epidermidis, subcritical water extract showed the stronger activity than hot water extract. In addition, DPPH and ABTS cation radical scavenging activity experiments showed that the radical scavenging activity of subcritical water extract was similar to that of hot water extract. Moreover, in the study of cell protection effect using HaCaT keratinocytes damaged by hydrogen peroxide (H2O2), the subcritical water extract (165℃, 80 bar) indicated protective effect against oxidative stress. These results suggested that the subcritical water extract of C. obtusa leaves as natural ingredients could be used as anti-inflammatory, anti-bacterial and anti-oxidative ingredients in cosmetic formulations.

Antioxidant and Cytoprotective Effects of Socheongja and Socheong 2, Korean Black Seed Coat Soybean Varieties, against Hydrogen Peroxide-induced Oxidative Damage in HaCaT Human Skin Keratinocytes (HaCaT 인간 피부 각질세포에서 과산화수소 유도 산화 손상에 대한 소청자 및 소총2호의 항산화 및 세포보호 효능)

  • Choi, Eun Ok;Kwon, Da Hye;Hwang, Hye-Jin;Kim, Kook Jin;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.454-464
    • /
    • 2018
  • Black soybeans are used as food sources as well as for traditional medicines because they contain an abundance of natural phenolic compounds. In this study, total phenolic contents (TPCs) of Korean black seed coat soybean varieties Socheongja (SCJ), Socheong 2 (SC2) and Cheongja 2 (CJ2) as well as their antioxidant capacities were investigated. Among them, TPCs were abundantly present in the order of CJ2$H_2O_2$-stimulated HaCaT human keratinocytes. Our results revealed that treatment with SCJ and SC2 prior to $H_2O_2$ exposure significantly increases the viability of HaCaT cells, indicating that the exposure of HaCaT cells to SCJ and SC2 conferred a protective effect against oxidative stress. SCJ and SC2 also effectively inhibited $H_2O_2$-induced apoptotic cell death through the blocking of mitochondrial dysfunction. SCJ and SC2 also attenuated the phosphorylation of Histone H2AX. Furthermore, they effectively induced the levels of thioredoxin reductase (TrxR) 1, a potent antioxidant enzyme, which is associated with the induction of nuclear transcription factor erythroid-2-like factor 2 (Nrf2); however, the protective effects of SCJ and SC2 were significantly reversed by Auranofin, a TrxR inhibitor. These results indicate that they have protective activity through the blocking of cellular damage related to oxidative stress via the Nrf2 signaling pathway. In conclusion, our study indicated that SCJ and SC2 might potentially serve as novel agents for the treatment and prevention of skin disorders caused by oxidative stress.