• Title/Summary/Keyword: hydrogen peroxide stress

Search Result 503, Processing Time 0.025 seconds

Antiapoptotic Role of Pyruvate in Vascular Endothelial Cells (혈관내피세포의 Apoptosis에 대한 Pyruvate의 억제효과)

  • 정세진
    • Journal of Nutrition and Health
    • /
    • v.32 no.3
    • /
    • pp.318-326
    • /
    • 1999
  • Apoptotic cell death, characterized by DNA fragmentation and morphological changes, has previously been shown to occur in vascular endothelial cells cultured with hydrogen peroxide. The present study examined the induction of apoptosis by hydrogen peroxide and whether pyruvate, a key glycolytic intermediate and $\alpha$-keto-monocarboxylate, can inhibit the apoptotic effects in bovine pulmonary artery endothelial cells(BPAECs). Culture with 500uM hydrogen peroxide resulted in 30% cell death and induced morphological changes and DNA fragmentation. Cell injury was inhibited by the treatment with pyruvate. Pyruvate(0.1-5.0mM), and cell viability increased in a dose-dependent manner. In the presence of pyruvate(10~20mM), the viability was improved to over 95%. In contrast, treatment with lactate, a reduced form of phyuvate, did not protect against cell death oxidative stress-induced loss of viability and apoptosis was examined with $\alpha$-cyano-3-hydroxycinnarmate(COHC) as a selective mitochondrial monocarboxylate transport blocker. Incubation with COHC(500uM) did not significantly affect cell viability in the presence of hydrogen peroxide. The cytoprotection by pyruvate(3mM)against hydrogen peroxide stress was abolished by COHC. This indicates that the cytoprotection by pyruvate against oxidative stress in endothelial cells is mediated, at least in part, by mitochondrial pyruvate uptake and hence endothelial enerygetics. However, cytosolic mechanisms related, at least in part, by mitochondrial pyruvate uptake and hence endothelial energetics. However, cytosolic mechanisms related to the glutathione system may also contribute. The results suggest that pyruvate has therapeutic potential in the treatment of oxidative stress-induced cytotoxicity associated with increased apoptosis.

  • PDF

Effect of Kimchi Ingredients to Reactive Oxygen Species in Skin Cell Cytotoxicity (김치 주.부재료의 활성산소에 대한 피부 세포독성 완화효과)

  • 문갑순;류승희;전영수;문정원;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.998-1005
    • /
    • 1997
  • Kimchi showed protective effect from oxidative damage generated by hydrogen peroxide and paraquat. To investigate the major components of kimchi which reduce the cytotoxicity against reactive oxygen species, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured under oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence or presence of kimchi ingredients. Most keratinocyte and fibroblast cells were killed by hydrogen peroxide and paraquat over 1mM concentration, but kimchi ingredients showed protective effects from oxidative damage generated by hydrogen peroxide and onion, among those, garlic showed the most remarkable preventive effect. Most of kimchi ingredients showed protective effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect from cell killing by high dose of hydrogen peroxide, but most ingredients were not effective against paraquat.

  • PDF

Antioxidant effect of Woogyuyeum against hydrogen peroxide-induced oxidative stress in Leydig cells (右歸飮이 hydrogen peroxide에 의해 유도된 Leydig cell에 미치는 항산화 효과 연구)

  • Kim, Soo Hyun;Kim, Do Rim;Chang, Mun Seog;Park, Seong Kyu
    • Herbal Formula Science
    • /
    • v.23 no.1
    • /
    • pp.111-119
    • /
    • 2015
  • Objectives : The purpose of this study was to investigate the antioxidant activity of water extract of Woogyuyeum (WGY) in Leydig cells. Methods : We investigated the cytoprotective effect of WGY in cultured mouse Leydig cells by MTT assay. Leydig cells treated with WGY were incubated in the presence or absence of 50 μM hydrogen peroxide at 37℃ for 24 h. The protective effects of WGY against hydrogen peroxide-induced oxidative stress, lipid peroxide (LPO), superoxide dismutase (SOD), and catalase activity assays were performed in Leydig cells. Results : As a result, WGY showed no significant cytotoxicity in Leygdig cells. WGY showed cell viability as 103.65% in 5 μg/ml concentrations. The cytotoxicity induced by hydrogen peroxide in Leygdig cells, the antioxidant effects of WGY was increased in 1, 5, 50, 100 ug/ml concentraions. 100 μg/ml concentration of WGY showed maximum antioxidant effects. Treatment of cells with 100 μg/ml WGY significantly reduced the MDA concentration to 0.23 nmoles/mg protein. SOD activity was increased at 1, 100 μg/ml concentration of WGY and catalase activity was significantly increased at 50, 100 μg/ml concentrations of WGY, respectively. Conclusions : In conclusion, WGY has antioxidant activities against hydrogen peroxide-induced oxidative stress in Leydig cells.

The Preventive Effect of 5-Iodo-6-Amino-1,2-Benzopyrone on Apoptosis of Rat Heart-derived Cells induced by Oxidative Stress

  • Kyoumg A Chung;Ji Seung Back;Jae Hyun Jang
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • Ischemia-reperfusion results in excess reactive oxygen species (ROS) that affect myocardial cell damage. ROS production inhibition is effectively proposed in treating cardiovascular diseases including myocardial hypertrophy. Studies have shown that oxidizing cultured cells in in vitro experiments gradually decreases the permeability of mitochondrial membranes time- and concentration-dependent, resulting in increased mitochondrial membrane damage due to secondary ROS production and cardiolipin loss. However, recent studies have shown that 5-iodo-6-amino-1,2-benzopyrone (INH2BP), an anticancer and antiviral drug, inhibited peroxynitrite-induced cell damage in in vitro and alleviated partial or overall inflammation in animal experiments. Therefore, in this paper, we studied the preventive effect of INH2BP on H9c2 cells derived from mouse heart damaged by oxidative stress using 700 μM of hydrogen peroxide. As a result of oxidative stress to H9c2 cells by hydrogen peroxide whether the treatment of INH2BP or not, hydrogen peroxide caused serious damage in H9c2 cells. These results were confirmed with cell viability and Hoechst 33342 assays. And this damage was through cell death. However, it was confirmed that H9c2 cells pretreated with INH2BP significantly reduced cell death by hydrogen peroxide. In addition, measurements with DCF-DA assay to determine whether ROS is produced in H9c2 cells treated with only hydrogen peroxide produced ROS significantly, but H9c2 cells pretreated with INH2BP significantly reduced ROS production by hydrogen peroxide. Taken together, it is believed that INH2BP can be useful for the prevention and treatment of cardiovascular diseases induced through oxidative stress such as heart damage caused by ischemia/reperfusion.

Protectvie effects of Lonicerae Japonicae Flos against hydrogen peroxidase-induced oxidative stress on Human keratinocyte, HaCaT cells (Hydrogen peroxide로 산화적 스트레스가 유도된 HaCaT keratinocyte에서 금은화의 세포 보호 효과)

  • Seo, Seung-Hee;Choi, Mee-Ok
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.57-62
    • /
    • 2013
  • Objectives : Lonicerae Japonicae Flos (LJF) has been shown anti-oxidant, anti-inflammatory, anti-viral, anti-rheumatoid properties. However, it is still largely unknown whether LJF inhibits skin injury against oxidative stress in human keratinocyte, HaCaT cells. The purpose of this study was to evaluate the protective effects of LJF against hydrogen peroxide($H_2O_2$)-induced oxidative stress in human keratinocytes, HaCaT cells. Methods : To evaluate out the protective effects of LJF on oxidative injury in HaCaT cells, an oxidative stress model of HaCaT cells was established under a suitable concentration (500 ${\mu}M$) hydrogen peroxide. HaCaT keratinocyte cells were pre-treated with LJF (0.1, 0.25 or 0.5 mg/ml), and then stimulated with $H_2O_2$. Then, the cells were harvested to measure the cell viability, DNA damage, and release of reactive oxygen species (ROS). Results : LJF (0.1, 0.25 or 0.5 mg/ml) itself did not show any significant toxicity in HaCaT cells. The treatment of $H_2O_2$ caused the oxidative stress, leading to the cell death, and DNA injury. However, pretreatment with LJF reduced cell death, and DNA injury. The stimulation of $H_2O_2$ on HaCaT cells resulted in excessive release of ROS, which is the main factor of oxidative stress. The excessive release of ROS was inhibited by LJF treatment significantly. Conclusions : These results could suggest that LJF exhibited the protective effects of HaCaT cells against $H_2O_2$-induced oxidative stress by inhibiting ROS release. It could be explained that LJF inhibit skin damages against oxidative stress. Thus, LJF would be useful for the development of drug or cosmetics treating skin troubles.

Enhanced Antioxidant Enzymes Are Associated with Reduced Hydrogen Peroxide in Barley Roots under Saline Stress

  • Kim, Sang-Yong;Lim, Jung-Hyun;Park, Myoung-Ryoul;Kim, Young-Jin;Park, Tae-Il;Seo, Yong-Won;Choi, Kyeong-Gu;Yun, Song-Joong
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.218-224
    • /
    • 2005
  • Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root was most highly correlated with the CAT activity, indicating an increased role of CAT in hydrogen peroxide detoxification under salinity stress. In addition, the results suggest the significance of temporal and spatial regulation of each antioxidant isoform in determining the competence of the antioxidant capacity under saline stress.

Profile Analysis of Proteins Related with Hydrogen Peroxide Response in Strep-tomyces coelicolor (Muller) (Streptomyces coelicolor (Muller)의 과산화수소 대응 반응에 관련된 단백질 양상의 분석)

  • 정혜정;노정혜
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.166-174
    • /
    • 1993
  • Streptomyces coeUc%r (Muller) cells were treated with $100 \mu$M hydrogen peroxide for I hour and proteins synthesized during hydrogen peroxide stress were labeled with L-[$^{35}S$]-methionine. Total cellular proteins were extracted and analyzed by two-dimensional polyacrylamide gel electrophoresis. In exponential growth phase, synthesis of about 100 proteins was increased by hydrogen peroxide treatment. These proteins were named as Pin (£eroxide-inducib]e) proteins and classified into 4 subgroups according to their induction time after hydrogen peroxide treatment. About 60 of them were found to be induced within 20 minutes and maintained throughout I hour of treatment. In stationary growth phase. synthesis of 62 proteins was increased by hydrogen peroxide and 21 of them were the same Pins found in exponential growth phase. Proteins from the mutants which are resistant to hydrogen peroxide were obtained in exponential growth phase and compared with those from the wild type on two-dimensional gel. The three mutants, N7, N9. and N24, were found to have higher constitutive leve]s of ]5, 17, and 15 Pin proteins respectively, than the wild type. 9 of these Pin proteins (D74.7a, E76.0c, E23.3. F50.7, F47.2a. F25.5, G39.6b, G24.0, H39.6a) increased in two of the three mutants and 3 proteins (F39.7, H6I.7. 120.8) increased in all of the three mutants. These proteins might play important roles in the response of S. coelic%r to hydrogen peroxide.

  • PDF

Effects of baicalein on hydrogen peroxide productions in mouse macrophages stimulated by lipopolysaccharide and peptidoglycan (지질다당체와 펩티도글라이칸 공동 자극으로 유발되는 대식세포의 하이드로겐 퍼록사이드 생성증가에 미치는 바이칼레인의 작용 고찰)

  • Wansu Park
    • The Korea Journal of Herbology
    • /
    • v.38 no.6
    • /
    • pp.45-52
    • /
    • 2023
  • Objectives : Effects of baicalein (BA) on oxidative stress in RAW 264.7 mouse macrophages stimulated with peptidoglycan (PG) and lipopolysaccharide (LPS) were investigated. Methods : RAW 264.7 co-stimulated with LPS and PG were incubated with BA at concentrations of 25 and 50 µM. Incubation time was 18 h, 20 h, 22 h, 24 h, and 26 h. After incubation, the production of hydrogen peroxide in RAW 264.7 was measured with dihydrorhodamine 123 assay. Additionally, RAW 264.7 stimulated with PG were incubated with BA at concentrations of 25 and 50 µM for 24 h. After incubation, NO production was evaluated by griess reagent assay. Results : BA significantly inhibited hydrogen peroxide productions (p <0.05). In details, production of hydrogen peroxide in 'LPS and PG'-stimulated RAW 264.7 treated for 18 h with BA at concentrations of 25 and 50 µM was 91.27% and 89.22% of the control group treated with LPS and PG only, respectively; the production of hydrogen peroxide for 20 h was 92.19% and 90.58%, respectively; production of hydrogen peroxide for 22 h was 91.69% and 89.89%, respectively; production of hydrogen peroxide for 24 h was 92.4% and 90.19%, respectively; production of hydrogen peroxide for 26 h was 91.7% and 89.04%, respectively. Additionally, BA at the concentration of 50 and 100 µM significantly inhibited NO production in PG-induced RAW 264.7 (p <0.05). Conclusions : BA might have anti-oxidative activity related to its inhibition of hydrogen peroxide production in 'LPS and PG'-stimulated RAW 264.7 macrophages.

Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts

  • Dash, Rupesh;Acharya, Chitrangada;Bindu, P.C.;Kundu, S.C.
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • The antioxidant potential of silk protein sericin from the non-mulberry tropical tasar silkworm Antheraea mylitta cocoon has been assessed and compared with that of the mulberry silkworm, Bombyx mori. Skin fibroblast cell line (AH927) challenged with hydrogen peroxide served as the positive control for the experiment. Our results showed that the sericin obtained from tasar cocoons offers protection against oxidative stress and cell viability is restored to that of control on pre-incubation with the sericin. Fibroblasts pre-incubated with non-mulberry sericin had significantly lower levels of catalase; lactate dehydrogenase and malondialdehyde activity when compared to untreated ones. This report indicates that the silk protein sericin from the non-mulberry tropical tasar silkworm, A. mylitta can serve as a valuable antioxidant.

Antioxidant activity of flavonoid, myricetin and (+)-catechin on B16F10 murine melanoma cell in oxidative stress with hydrogen peroxide

  • Yu, Ji-Sun;Kim, An-Keun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.211.1-211.1
    • /
    • 2003
  • There are now increasing evidences that free radicals and reactive oxygen species are involved in a variety of pathological events. Flavonoids. a group of polypenolic compounds, are widespread in the human food supply. This study was carried out to investigate the antioxidant activity of these compounds. myriceitn and (+)-catechin on B 16Fl0. murine melanoma cell line in oxidative stress. Oxidative stress was induced by exposure to hydrogen peroxide. (omitted)

  • PDF