• Title/Summary/Keyword: hydrogen engine

Search Result 361, Processing Time 0.019 seconds

Development of a Hydrogen-Peroxide Rocket Engine of l00N Thrust (l00N $H_2O_2$ Monopropellant 로켓 엔진의 개발)

  • Sang-Hee Ahn;S. Krishnan;Choog-Won Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-134
    • /
    • 2003
  • There has been a renewed interest in the use of hydrogen peroxide as an oxidizer in bipropellant liquid rocket engines as well as in hybrid rocket engines. This is because hydrogen peroxide is a propellant of low toxicity and enhanced versatility. The present paper details the features of the designed engine of l00N thrust and its facility. Also explained is the arrangement of the distillation unit to be used to prepare rocket-grade hydrogen-peroxide propellant. Results of the simulated "cold" tests are presented.

  • PDF

Extension of Backfire Limited Equivalence Ratio in Hydrogen Engine by Using Multi Point Ignition Method (다점점화에 의한 수소기관의 역화발생 억제효과에 관한 검토)

  • Kim, Y.Y.;Lee, C.W.;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.131-137
    • /
    • 2003
  • Backfire occurrence must be controlled for the practical use of hydrogen fueled engine. It was found from preceeding studies that crevice volume around piston rings could effect a backfire occurrence. In this study, a possible countermeasure to backfire occurrence was evaluated by using multi point ignition method around piston ring. The results showed that backfire limited equivalence ratio was increased by a little due to a enhancing effect of mixture combustion around piston crevice volume.

Experimental Study to Improve the Performance and Emission of CNG Dual Fuel Diesel Engine Mixed with Hydrogen (CNG Dual Fuel 디젤기관의 성능과 배출가스 개선을 위한 수소혼합 실험)

  • ;Masahiri Shioji
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • In this study, the performance and pollutant emission of CNG engine using diesel oil as a source of ignition, so called CNG dual fuel diesel engine is considered by experiment. One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of total hydrocarbon (THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. and when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the knocking limit decrease and the produce of NOx increases.

  • PDF

Simulation and Prediction on the Performance of a Hydrogen Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.217-222
    • /
    • 2015
  • A computer simulation has been developed to predict and investigate the performance of the assumed hydrogen engine. The simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. The effects of various parameters, such as equivalent ratio, spark advance, revolutions per minute were calculated and then the optimal parameters of assumed engine were determined. The effects of spark advance, revolutions per minute, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The objective of the research paper is to develop a internal combustion model with hydrogen as a fuel.

A Study on Development of High Pressure Hydrogen Injection Valve (직접분사식 고압 수소분사밸브의 개발에 관한 연구)

  • Kim, Yun-Young;Ahn, Jong-Yun;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance (흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Lee, Jin-A;Lee, Wha-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1050-1056
    • /
    • 2010
  • Diesel engines introduce only air into the cylinder, and the air is high lycompressed. Fuel is directly injected into the combustion chamber in high temperature and pressure. Therefore diesel engines have high thermal efficiency because of the high compression ratio, while having high level of particulate matter and nitrogen oxide emissions because of the direct fuel injection. Many technologies have been developed to reduce particulate matter and nitrogen oxide emissions from diesel engines. One of the technologies is hydrogen fuel introduced into the combustion chamber with diesel fuel. In this thesis tiny amount of hydrogen is supplied into the combustion chamber in order to enhance the combustion performance. The engine, in which hydrogen is introduced, is tested. There are 20 test conditions given as 5 torque values of 100%, 75%, 50%, 25%, 0%, and 4 engine speeds of 700rpm, 1000rpm, 1500rpm and 2000rpm for the two cases with or without hydrogen addition. Maximum torques and Idle torques at each engine speed are measured, then the torque values are divided into 4 levels with 25% increasing step. The result shows that the fuel consumption, smoke, CO are reduced while the NOx emission is slightly increased, and the hydrogen addition has not a great effect on the performance at low loads but a great effect at a maximum load.

Numerical analysis on performances and emission characteristics of HCCI engine fueled with hydrogen added biogas (반응 메커니즘 기반의 수소 첨가 바이오가스 HCCI 엔진 성능 및 배출가스에 대한 수치 해석적 연구)

  • Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • In this research, numerical analysis was performed to determine the effects of hydrogen on biogas combustion for homogeneous charged compression ignition (HCCI) engines. The target engine specifications were a 2300cc displacement volume, 13:1 compression ratio, 15kW of electricity, and 1.2 bar boost pressure. The engine speed was fixed to 1800rpm. By varying the excess air ratio and hydrogen contents, the cylinder pressure, nitric oxide, and carbon dioxide were measured as a function of the hydrogen contents. According to preliminary studies related to the reaction mechanism for methane combustion and oxidation, a GRI 3.0 mechanism as the base mechanism was selected for HCCI combustion calculations describing the detailed reaction mechanism. By adding hydrogen, NO was increased while $CO_2$ was decreased. The cylinder pressure was also increased, having advanced timing for the maximum cylinder pressure and pressure rise region. Furthermore, lean operation limits were extended by adding hydrogen to the HCCI engine.

An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine (예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

The Research about Free Piston Linear Engine Fueled with Hydrogen using Numerical Analysis (수소를 연료로 사용한 프리피스톤 리니어 엔진의 수치해석에 관한 연구)

  • Nguyen, Ba Hung;Oh, Yong-Il;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.162-172
    • /
    • 2012
  • This paper presents a research about free piston linear engine (FPLE) fueled with hydrogen, in which, the numerical models are built to simulate the operation during the full stroke of the engine. Dynamic model, linear alternator model and thermodynamic model are used as the numerical models to predict piston velocity, in-cylinder pressure and electric power of FPLE. The spark timing and air gap length are changed to provide information for the prediction. Beside, the heat transfer problem is also investigated in the paper. The results of research are divided by two parts, including motoring mode and firing mode. The result of motoring mode showed that there is validation between simulation and experiment for volume and pressure in cylinder. For firing mode, by increasing spark timing, the velocity of piston, peak pressure and electric power also increase respectively. Beside, when increasing air gap length, the electric power increases accordingly while the motion of piston is not symmetric. The effect of heat transfer also observed clearly by reducing of the peak pressure, velocity of piston and electric power.

The Realization of High Performance in a Hydrogen-Fueled Engine with External Mixture by Retarding Valve Timing and Super Charging (밸브 타이밍 지각과 과급에 의한 흡기관 분사식 수소기관의 고성능 실현)

  • Lee, Kwang-Ju;Hur, Sang-Hoon;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • In order to analysis the possibility of high expansion and performance without backfire in a hydrogenfueled engine using external mixture injection, combustion characteristics and performance enhancement were analyzed in terms of retarding valve timing and increasing the boosting pressure. As the results, it was found that thermal efficiency increased by retarding intake valve timing with the same level of supplied energy is over 6.6% by the effect of high expansion including effect of combustion enhancement due to supercharging. It was also shown that the achievement of high power (equal to that of a gasoline engine), low brake specific fuel consumption and low emission (NOx of less than 16 ppm) without backfire in a hydrogen-fueled engine is possible around a boosting pressure of 1.5 bar, intake valve opening time of TDC and $\Phi$=0.35 in fuel-air equivalence ratio.