• Title/Summary/Keyword: hydrogen capacity

Search Result 646, Processing Time 0.03 seconds

The Hydrogenation Behaviors of V-xAl (x=1, 5wt.%) Composites by Mechanical Alloying (기계적 합금화법으로 제조한 V-xAl (x=1, 5wt.%) 복합재료의 수소화 반응 거동)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.458-464
    • /
    • 2011
  • Recently, one of the hydrogen production methods has attracted using dense metallic membrane. It has high hydrogen permeation and selectivity which hardly could adopt industrial product because of high cost, hydrogen embrittlment and thermal stability. Meanwhile, vanadium has high hydrogen solubility and it use to instead of Pd-Ag amorphous membrane. Aluminum carried out blocking hydrogen diffusion on grain boundary therefore protecting hydrogen embrittlement. Most of dense metallic membrane is solution diffusion mechanism. The solution diffusion mechanism was very similar hydrogen storing steps such as steps of metal hydride. Thus, V-Al composites were fabricated to use hydrogen induced mechanical alloying. The fabricated V-Al composites were characterized by XRD, SEM, EDS and simultaneous TG/DSC analyses. The hydrogenation behaviors were evaluated using a Sievert's type automatic PCT apparatus. The hydrogenation behaviors of V-Al composites was evaluated too low hydrogen stored capacity and fast hydrogenation kinetics. In PCI results, V-Al composites had low hydrogen solubility, in spite of that, hydrogen kinetics was calculated very fast and hydrogen absorption/desorption contents were same capacity.

Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production (국내 저온수전해 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook;Ko, Hyun-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2011
  • This paper deals with an economic evaluation of domestic low-temperature water electrolysis hydrogen production. We evaluate the economic feasibility of on-site hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ by the alkaline and the polymer electrolyte membrane water electrolysis. The hydrogen production prices of the alkaline water electrolysis, the polymer electrolyte membrane water electrolysis, and the steam methane reforming hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ were estimated as 18,403 $won/kgH_2$, 22,945 $won/kgH_2$, 21,412 $won/kgH_2$, respectively. Domestic alkaline water electrolysis hydrogen production is evaluated as economical for small on-site hydrogen fueling stations, and we need to further study the economic evaluation of low-temperature water electrolysis hydrogen production for medium and large scale on-site hydrogen fueling stations.

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho;Kwak, Young Jun;Song, Myoung Youp
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1403-1411
    • /
    • 2018
  • Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Characteristics of Hydrogen Storage Alloy powder Compacts Using Polymer Binders (고분자 결합제를 이용한 수소저장합금 분말 성형체의 특성)

  • Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 1999
  • Various characteristics - mechanical propertis, thermal cyclic hydriding characteristics and resistance to degradation by $H_2O$, CO in hydrogen - of hydrogen storage alloy powder compacts using PTFE and silicon sealant as a polymer binder were studied. Diametral tensile strength of 10wt% PTFE and 5wt% silicon sealant added compacts showed relatively high value of $4kg/cm^2$ and $10kg/cm^2$, respectively. Compacts show a good resistance to degradation by $H_2O$ in hydrogen. But hydrogen absorption rate and capacity of compacts were decreased by CO in hydrogen with the number of cycles. Cu coated and PTFE bonded compacts showed very small decrease of capacity and a good strength even after 1000 cycles of thermal hydriding and dehydriding.

  • PDF

Hydrogen Storage Using Pd Doped Mesoporous Carbon Materials (팔라듐이 담지된 중형 기공성 탄소 재료를 이용한 수소 저장)

  • Kim, Wooyoung;Kim, Dongmin;Hong, Youngteak;Kang, Taegyun;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2006
  • Two types of mesoporous carbons, CMK-3 and CMK-5, were prepared using mesoporous silica as a removable template, and their hydrogen storage capacities were evaluated. For the purpose of comparison, MWCNT (multi-walled carbon nanotubes) was selected and the adsorption of hydrogen was measured. The amount of hydrogen adsorbed on carbon materials was found to be closely related to the surface areas of carbon samples: The higher the surface area of the carbon material, the larger amount of hydrogen was adsorbed. The hydrogen storage capacity increased in the order of CMK-5 > CMK-3 > MWCNT. In addition, hydrogen storage capacity was greatly enhanced by the Pd-doping onto CMK-5. When the metallic Pd was doped on the carbon material, the adsorption amount of hydrogen via a hydrogen spill-over mechanism was crucial to the hydrogen storage capacity of Pd-doped CMK-5.

  • PDF

Development of Preparation Technique of Sintered Ni Electrode (소결식 니켈극 제조기술 개발)

  • Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.159-170
    • /
    • 1999
  • Recently Ni/MH secondary battery have been studied very extensively because of containing no pollutants as well as superior performance. However comparing to widely studying high capacity of hydrogen storage alloys electrode, the capacity of Ni electrode is inferior. Using for high capacity Ni/MH battery as a anodic materials, the study about high capacity Ni electrode is necessary. To making high capacity Ni electrode, active materials were impregnated in various polarization impregnation conditions. Plaque, milling for 6hr and sintered at $800^{\circ}C$, indicated porosity over 80%, and porosity were increased with proper condition electrochemical etching treatment. Proper impregnation condition was 40~80mA/cm, polarizing time was 5~10min.

  • PDF

Changes of Hydrogen Storage Properties upon Hydrogen Absorption-Desorption Cycling in AB5-type Alloys (AB5계 합금에 있어서 수소 흡수-방출 cycling에 따른 수소 저장 특성 변화)

  • Noh, Hak;Choi, Jeon;Jung, So-Ri;Choi, Seung-Jun;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.177-189
    • /
    • 2001
  • T hydrogen absorption-desorption behavior induced by thermal or hydrogen pressure cycling in a closed system was observed in hydrogen storage alloys, $(La-R-Mm)Ni_{4.5}Fe_{0.5}$, $MmNi_4Fe_{0.85}Cu_{0.15}$ and $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$. Thereby (La-R-Mm), Mm and (Ce-F-Mm) refer to La-rich mischmetal, mischmetal and Ce-free mischmetal respectively. As the results, it is found that the alloy stabilities during thermal cycling varies with alloy composition change. The highest stability occurs in $MmNi_4Fe_{0.85}Cu_{0.15}$ and the lowest stability in $(La-R-Mm)Ni_{4.5}Fe_{0.5}$. Comparing hydrogen pressure cycling with thermal cycling, pressure cycling causes severer degradation of the alloy $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$ than thermal cycling. When the 1500 times-cycled alloy is annealed at $400^{\circ}C$ for 3hrs under 1 atm of hydrogen pressure the hydrogen storage capacity is recovered only partially but not completely to the initial capacity. The amount of capacity loss after annealing is larger in the hydrogen pressure cycled samples than in the thermal cycled, suggesting an incoming of impure gas during hydrogen pressure cycling.

  • PDF

Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part II: CFD Simulation (극저온 냉동기를 활용한 기체 수소 예냉 시스템 검증에 관한 연구 Part II: CFD 시뮬레이션)

  • YOUNG MIN SEO;HYUN WOO NOH;DONG WOO HA;TAE HYUNG KOO;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.439-446
    • /
    • 2023
  • In this study, the computational fluid dynamics (CFD) simulations were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. Based on the experimental results, the effect of the flow rate on a copper pipe attached to the bottom of the cryocooler was investigated. In this study, the temperature data was calculated through the change of boundary condition for heat flux in the copper pipe. In addition, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate in the certified operating range. Consequently the pre-cooing system for hydrogen gas was validated with a reasonable accuracy through CFD simulations.

Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment (Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상)

  • You, Jeong-Hyun;Cho, Sung-Wook;Shim, Gun-Choo;Choi, Good-Sun;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.

The Changes of Hydrogenation Properties of LaNi5 alloy by Hydrogen Charging Condition (수소주입조건 변화에 따른 LaNi5합금의 특성변화)

  • Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.1
    • /
    • pp.33-39
    • /
    • 1994
  • The changes of hydrogenation properties of $LaNi_5$ by hydrogen charging condition were investigated using the P-C-isotherm curves, DSC(Differential Scanning Calorimetry), GC(Gas Chromatograph), X-ray diffractometer. As a results of static hydrogen charging, the hydrogen storage capacity gradually decreased and the plateau region severly slopped. Most of the degraded properties could be restored by the annealing treatment. The degradation of hydrogen storage capacity was related with the formation of stable hydride, which was not dehydrided at room temperature.

  • PDF