• 제목/요약/키워드: hydrogen capacity

검색결과 646건 처리시간 0.027초

화학적 산처리가 중기공 탄소체의 수소저장거동에 미치는 영향 (Effect of Acid Treatments on Hydrogen Storage Behaviors of Ordered Mesoporous Carbons)

  • 이슬이;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2010
  • We investigated the effect of chemical acid treatments on hydrogen storage behaviors of the ordered mesoporous carbons (MCs). The surface functional groups and specific elements of the MCs were characterized with Fourier Transform Infrared (FT-IR) spectrometry and X-ray photoelectron spectroscopy (XPS). Also, the changes in the surface functional groups of the MCs were quantitatively detected by Boehm's titration method. The structural properties of the MCs were investigated using X-ray diffraction (XRD). The hydrogen adsorption capacity of the MCs was evaluated by means of adsorption isotherms at 77 K/1 bar. The formation of surface functional groups by the acidic treatments could influence on the hydrogen storage capacity of the MCs.

  • PDF

초미세기공을 지니는 탄소분자체의 수소저장거동 (Preparation and Characterization of Ultramicroporous Carbons for Hydrogen Storage)

  • 이슬이;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.158.1-158.1
    • /
    • 2011
  • In this work, we prepared ultramicroporous carbons (UC) prepared by pyrolyzing poly(vinylidene fluoride) with different carbonization temperatures, and investigated the hydrogen storage behaviors. The surface functional groups and specific elements of UC were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), respectively. Textural properties were analyzed using $N_2$ adsorption isotherms at 77 K. The hydrogen storage capacity of the UC samples were investigated by BEL-HP at 298 K/10 MPa. From the results, it was found that the hydrogen storage capacity was enhanced with increasing of specific surface area, resulting from the formation of ultramicropore on the UC.

  • PDF

전이금속 함유 전기방사 된 탄소섬유 웹의 수소 흡장 (The hydrogen adsorption of electrospun carbon fibers web involving transition metal)

  • 임지선;김주완;박수진;김영호;이영석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.77-80
    • /
    • 2007
  • To increase the capacity of hydrogen adsorption, transition metals were adopted as catalyst. The PAN-based CNFs involving transition metal were obtained by electrospinning method and heat treatment. To study the surface of carbon fibers, SEM analysis was conducted. The mass of transition metals were spreaded or covered among CNFs. XRD and EDX analysis were used to confirm transition metals on the surface of carbon fibers. Volumetric method was used for studying the capacity of hydrogen adsorption on the carbon fibers involving transition metals. In this study. vanadium has the best characteristics among chromium, titanium, and copper for hydrogen adsorption.

  • PDF

부피법을 이용한 고압·극저온 수소 흡착량 측정 방식의 기본 원리 (Volumetric Hydrogen Sorbent Measurement at High Pressure and Cryogenic Condition - Basic Measurement Protocols)

  • 오현철
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.349-356
    • /
    • 2016
  • Volumetric capacity metrics at cryogenic condition are critical for technological and commercial development. It must be calculated and reported in a uniform and consistent manner to allow comparisons among different materials. In this paper, we propose a simple and universal protocol for the determination of volumetric capacity of sorbent materials at cryogenic condition. Usually, the sample container volume containing porous sample at RT can be directly determined by a helium expansion test. At cryogenic temperatures, however, this direct helium expansion test results in inaccurate values of the sample container volume for microporous materials due to a significant helium adsorption, resulting significant errors in hydrogen uptake. For reducing this container volume error, therefore, we introduced and applied the indirect method such as 'volume correction using a non-porous material', showing a reliable cold volume correction.

Water Splitting Capacity Improvement of Mn-Fe Oxide Prepared by Ball Milling with $ZrO_2$

  • Kang, Kyoung-Soo;Cho, Mi-Sun;Kim, Chang-Hee;Park, Chu-Sik
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1122-1123
    • /
    • 2006
  • Mn-Fe oxide and Mn-Fe oxide/$ZrO_2$(50wt%/50wt%) were prepared by ball milling method. XRD data of the prepared samples revealed that hematite and ferrite phase coexisted. Water splitting at 1273K, after thermal reduction at 1573K, was performed 4 times for the samples. Hydrogen production amount was analyzed by GC with TCD detector. Water splitting capacity of Mn-Fe oxide was improved by ball milling with $ZrO_2$.

  • PDF

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권7호
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

수소 가압형 기계적 합금화법을 이용한 MggTi1-(10, 20 Wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 2보 : 압력-조성-등온 특성 평가) (The Fabrication of MggTi1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties(Part II : Evaluation of Pressure-Composition-Isotherm Properties))

  • 홍태환;김경범;김영직
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.270-278
    • /
    • 2002
  • Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved, The main emphasis of this study was to find an economic manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties, In order to examine hydrogenation behavior, a Sieverts type automatic pressure-composition-isotherm(PCI) apparatus was used and the experiments were performed at 423, 473, 523, 573, 623 and 673K. The results of thermogravimetric analysis(TGA) reveal that the absorbed hydrogen contents are around 2.5 wt% for ($Mg_9Ti_1$)-10 wt% Ni. With increased Ni content, the absorbed hydrogen content decreases to 1.7 wt%, whereas the dehydriding starting temperatures are lowered by some 70-100K. The results of PCI on ($Mg_9Ti_1$)-20 wt% Ni show that its hydrogen capacity is around 5.3 wt% and its reversible capacity and plateau pressure are also excellent at 523K and 573K. In addition, the reaction enthalpy, $\Delta$HD.plateau, is $30.6{\pm}5.7kJ/molH_2$.

전해질 농도에 따른 아연-공기 전지의 전기화학적 특성 (Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries)

  • 한지우;조용남
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.

(Mm)Ni5계 수소저장합금의 전극 특성 (Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys)

  • 한동수;최승준;장민호;최전;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제6권1호
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

New Ball-Milled Metal Hydride Electrode for Rechargeable Batteries

  • 노학;;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.43-47
    • /
    • 1997
  • A new type of anode materials in form of nanocrystalline composite powders has been developed that offers the potential for dramatically improved discharge capacity and initial activation rate. The composites are synthesized by ball milling of two components - a major component (basic component) having high hydrogen capacity and a minor component (surface activator) with good electrocatalytic activity. The capacity increase observed by ball milling with surface activator. The ball-milled composite materials are easier to activate than the non ball-milled basic component.

  • PDF