• Title/Summary/Keyword: hydrogen bonds

Search Result 375, Processing Time 0.022 seconds

NMR Studies on Turn Mimetic Analogs Derived from Melanocyte-stimulating Hormones

  • Cho, Min-Kyu;Kim, Sung-Soo;Lee, Myung-Ryul;Shin, Joon;Lee, Ji-Yong;Lim, Sung-Kil;Baik, Ja-Hyun;Yoon, Chang-Ju;Shin, In-Jae;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.552-557
    • /
    • 2003
  • Oligomers with $\alpha$-aminooxy acids are reported to form very stable turn and helix structures, and they are supposed to be useful peptidomimetics for drug design. A recent report suggested that homochiral oxa-peptides form a strong eight-member-ring structure by a hydrogen bond between adjacent aminooxy-acid residues in a $CDCl_3$ solution. In order to design an $\alpha$-MSH analog with a stable turn conformation, we synthesized four tetramers and one pentamer, based on $\alpha$-MSH sequence, and determined the solution structures of the molecules by two-dimensional NMR spectroscopy and simulated annealing calculations. The solution conformations of the three peptidomimetic molecules (TLV, TDV, and TLL) in DMSO-$d_6$ contain a stable 7-membered-ring structure that is similar to a $\gamma$-turn in normal peptides. Newly-designed tetramer TDF and pentamer PDF have a ball-type rigid structure that is induced by strong hydrogen bonds between adjacent amide protons and carbonyl oxygens. In conclusion, the aminooxy acids, easily prepared from natural or unnatural amino acids, can be employed to prepare peptidomimetic analogues with well-defined turn structures for pharmaceutical interest.

Conformation of cyclo-[Gln-Trp-Phe- $\beta$Ala-Leu-Met], a NK-2 Tachykinin Receptor Antagonist (NK-2의 Antagonist인 cyclo-[Gln-Trp-Phe- $\beta$Ala-Leu-Met]의 형태에 관한 연구)

  • Ha, Jong Myung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.540-546
    • /
    • 1999
  • Solution conformation of cyclo-($Gln^1-Trp^2-Phe^3-{\beta}Ala^4-Leu^5-Met^6$), new NK-2 antagonist in dimethyl sulfoxide solution, has been determined by the use of two-dimensional nuclear magnetic resonance spectroscopy combined with simulated annealing calculations. The peptide exhibited converged structures with the atomic root-mean-square difference for the backbone atoms ($N,\;C^{\alpha},\;C'$) of all residues being 0.02${\AA}$ in the 25 annealed structures. The analysis of the structures indicated that the cyclic peptide has three intramolecular hydrogen bonds between $Met^6NH$ and ${\beta}Ala^4CO$, ${\beta}Ala^4NH$ and $Met^6CO$, $Phe^3NH$ and $Met^6CO$, and contain a type-I ${\beta}$-turn with Gln and Trp and ${\gamma}$-turn with Leu. The addition of an extra methylene group to Gly, i.e. P-Ala residue, may relax some unfavorable restraints in the cyclic backbone structure, hence enabling an additional hydrogen bond, which results in stabilizing one conformation.

  • PDF

Can Non-aqueous Solvent Desalinate?: Suggestion of the Screening Protocol for Selection of Potential Solvents (비수용성 용매를 이용한 탈염화 가능한가?: 적용 가능한 용매선정 기법 제안)

  • Choi, Oh Kyung;Seo, Jun Ho;Kim, Gyeong Soo;Kim, Dooil;Lee, Jae Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • This paper presents a screening protocol for the selection of solvents available for the solvent extraction desalination process. The desalination solvents hypothetically and theoretically require the capability of (1) Forming hydrogen bonds with water, (2) Absorbing some water molecules into its non-polar solvent layer, (3) Changing solubility for water-solvent separation, and (4) Rejecting salt ions during absorption. Similar to carboxylic acids, amine solvents are solvent chemicals applicable for desalination. The key parameter for selecting the potential solvent was the octanol-water partitioning coefficient (Kow) of which preferable value for desalination was in the range of 1-3. Six of the 30 amine solvents can absorb water and have a variable, i.e., temperature swing solubility with water molecule for water-solvent separation. Also, the hydrogen bonding interaction between solvent and water must be stronger than the ion-dipole interaction between water and salt, which means that the salt ions must be broken from the water and only water molecules absorbed for the desalination. In the final step, three solvents were selected as desalination solvents to remove salt ions and recover water. The water recovery of these three solvents were 15.4 %, 2.8 %, 10.5 %, and salt rejection were 76 %, 98 %, 95 %, respectively. This study suggests a new screening protocol comprising the theoretical and experimental approaches for the selection of solvents for the desalination method which is a new and challenges the desalination process in the future.

Self-Assembly of Three-Dimensional Copper(II) Macrocyclic Complex with 2,5-Pyridinedicarboxylate Linked by Hydrogen Bond (수소 결합에 의한 삼차원의 Copper(II) 거대고리 착물과 2,5-Pyridinedicarboxylate와의 자기조립)

  • Ki-Young Choi;Haiil Ryu;Yong-Son Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.104-108
    • /
    • 2003
  • The reaction of $[Cu(L)]Cl_2{\cdot}H_2O(L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18},0^{7.12}]docosane)$ with 2,5-pyridinedicarboxylate(pdc) led to the formation of $[Cu(L)(H_2O)](pdc){\cdot}6H_2O(1)$. The structure was characterized by X-ray crystallography and spectroscopic method. The coordination geometry around the copper atom is a distorted square-pyramid with four secondary amines of the macrocycle occupying the basal sites and a water molecule at the axial position. Intermolecular hydrogen bonds in 1 form a three-dimensional molecular network.

Characterization on the Thermal Oxidation of Raw Natural Rubber Thin Film using Image and FT-IR Analysis

  • Kim, Ik-Sik;Cho, Hwanjeong;Sohn, Kyung-Suk;Choi, Hwa-Soon;Kim, Sung-Uk;Kim, Sinkon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, the thermal oxidation of raw natural rubber (NR) was investigated under controlled conditions by optical image and fourier transform infrared (FT-IR) analysis. The thermal oxidation was performed on a transparent thin film of raw NR coated on a KBr window in a dark chamber at 80℃ under low humidity conditions to completely exclude moisture and restrict light oxidation. Images of the thin film of raw NR were obtained before and after thermal oxidation. FT-IR absorption spectra were measured in the transmission mode at different thermal exposure times. The thermal oxidation of NR was examined by the changes in the absorption peaks at 3449, 1736, 1447, 1377, 1242, 1072, and 833 cm-1, which corresponded to a hydroxyl group (-OH), a carbonyl group (-C=O) from an aldehyde and a ketone, a methylene group (-CH2-), a methyl group (-CH3), a carbon-oxygen single bond (-C-O) from an epoxide, a carbon-oxygen bond (-C-O) from an ether, an alcohol, a peroxide, or a cyclic peroxide, and a cis-methine group (cis-CCH3=CH-), respectively. In the initial stage of thermal oxidation, two different types of free radicals were produced quickly and randomly by the homolytic cleavage of a double bond and allylic hydrogen abstraction. Aldehydes and ketones were formed from chain scissions of the double bonds and alcohols were produced from allylic hydrogen abstraction at the methylene or methyl groups. Two reactions seemed to proceed competitively with each other. At a later stage, oxidative crosslinks seemed to dominate through the combination of free radicals such as an allyl radical (CH=CHCH2·), alkoxy radical (RO·), and peroxy radical (ROO·) and the reaction of a hydroperoxide (-ROOH) with a double bond. The image obtained after thermal oxidation showed hardening without cracks. Based on these observations, a plausible two-step mechanism was suggested for chain hardening caused by the thermal oxidation.

Emulsion Properties of Pseudo-Ceramide PC104/Water/Polyoxyethylene Cholesteryl Ether and Polyoxyethylene Cetyl Ether Mixtures.

  • Kim, Do-Hoon;Oh, Seong-Geun;Lee, Young-Jin;Kim, Youn-Joon;Kim, Han-Kon;Kang, Hak-Hee
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.330-342
    • /
    • 2003
  • The formation of emulsions and micelles in water/ceramide PC104/CholE $O_{20}$/C$_{16}$E $O_{20}$ and water/ceramide PC104/CholE $O_{20}$ mixtures was investigated through the phase behavior studies. The phase diagrams showed the existence of micelle and emulsion regions in both systems. The mixed surfactant system (CholE $O_{20}$/C$_{16}$E $O_{20}$) showed the wider micellar and emulsion regions than the single surfactant system (CholE $O_{20}$). From FT-IR measurements, it was found that the polyoxyethylene (POE) groups of surfactants formed the hydrogen bonds with amido carbonyl group in ceramide PC104. This result indicated that the hydrophilic part (EO) of surfactants could stabilize the lamellar structure and emulsion of ceramide PC104. The mixed surfactant system (CholE $O_{20}$/C$_{16}$E $O_{20}$) resulted in the smaller emulsion droplet size due to the effect of curvature at the interface, thus further increasing emulsion stability. With the penetration of $C_{16}$E $O_{20}$into the interfacial layer of surfactants in emulsion, the curvature of the interface might be altered for the formation of smaller emulsion droplets. The mixed surfactant system could incorporate up to 4 wt. % of ceramide PC104 into emulsion more than single surfactant system.ystem.m.

  • PDF

The Crystal and Molecular Structure of Piperidinothiosemicarbazide (Piperidinothiosemicarbazide의 結晶 및 分子構造)

  • Koo, Chung Hoe;Kim Hoon Sup;Chang Chong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 1975
  • The crystal structure of piperidinothiosemicarbazide, $C_6H_{13}N_3S$, has been determined by single crystal X-ray analysis. The space group is P21/c with four molecules in the unit cell of dimensions $a=14.68{\pm}0.04,\;b=4.59{\pm}0.02,\;c=12.92{\pm}0.04{\AA}\;and\;{\beta}=109.4{\pm}0.2^{\circ}$. Three-dimensional photographic intensities were estimated visually. The structure has been solved by an interpretation of a Patterson synthesis and refined by block-diagonal least-squares methods to give a final R value of 0.14 for 378 observed independent reflections. There are two independent hydrogen bonds in the structure. One of them is of the type N-H${\ldots}$S with the length 3.28 and $3.39{\AA}$, and another is of the type N-H${\ldots}$N with the length $3.03{\AA}$. Apart from the hydrogen bonding system the molecules are held together in the crystal by van der Waals forces.

  • PDF

Crystal Structure of Penicillin V Potassium Salt

  • Kim, Whan-Chul;Yi, Seung-Ho;Shin, Jung-Mi;Yoon, Tae-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.713-717
    • /
    • 1993
  • The crystal structure of the potassium salt of penicillin V has been studied by the X-ray crystallographic methods. Crystal data are as follows; potassium 3,3-dimethyl-7-oxo-6-phenoxyacetoamido-4-thia-1- azabicyclo[3.2.0]-heptane-2${\alpha}$-carboxylate, $K^+{\cdot}C_{16}H_{18}N_2O_5S^-$, $M_r$= 388.5, triclinic, Pl, a= 9.371 (1), b= 12.497 (2), c= 15.313 (2) ${\AA},\;{\alpha}= 93.74\;(2),\;{\beta}=99.32\;(1),\;{\gamma}=90.17\;(1)^{\circ},\;V=1765.7\;(2)\;{\AA}^3$, Z=4, $D_m=1.461\;gcm^{-1},\;{\lambda}(Cu\;K{\alpha})=1.5418\;{\AA},\;{\mu}=40.1\;cm^{-1}$, F(000)=808, T=296 K. The structure was solved by the heavy atom and difference Fourier methods with intensity data measured on an automated four-circle diffractometer. The structure was refined by the full-matrix least-squares method to a final R= 0.081 for 3563 observed $[I_0{\geq}2{\sigam}(I_0)]$ reflections. The four independent molecules assume different overall conformations with systematically different orientations of the phenyl groups although the penam moieties have the same closed conformations. There are intramolecular hydrogen bonds between the exocyclic amide nitrogen and phenoxy oxygen atoms. The penam moiety is conformationally very restricted although the carboxyl and exocyclic amide groups apparently have certain rotational degrees of freedom but the phenyl group is flexible about the ether bond despite the presence of the intramolecular N-H${\cdots}$O hydrogen bond. There are complicated pseudo symmetric relationships in the crystal lattice. The penam moieties are related by pseudo 20.5 screw axes and the phenyl groups by pseudo centers of symmetry. The potassium ions, related by both pseudo symmetries, form an infinite zigzag planar chain parallel to the b axis. Each potassium ion is coordinated to seven oxygen atoms in a severely distorted pentagonal bipyramid configuration, forming the infinite hydrophilic channels which in turn form the molecular stacks. Between these stacks, there are only lipophilic interactions involving the phenyl groups.

Drug-likeness and Oral bioavailability for Chemical Compounds of Medicinal Materials Constituting Oryeong-san (오령산 구성약재 성분의 Drug-likeness와 Oral bioavailability)

  • Kim, Sang-Kyun;Lee, Seungho
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.19-37
    • /
    • 2018
  • Objectives : Oryeong-san was composed of Alismatis Rhizoma, Atractylodis Rhizoma Alba, Poria Sclerotium, Polyporus, Cinnamomi Cortex, and known to have hundreds of chemical compounds. The aim of this study was to screen chemical compounds constituting Oryeong-san with the drug-likeness and oral bioavailability from the analysis of their physicochemical properties. Methods : A list of chemical compounds of Oryeong-san was obtained from TM-MC(database of medicinal materials and chemical compounds in Northeast Asian traditional medicine). To remove redundant compounds, the SMILES (Simplified Molecular Input Line Entry System) strings of each compound were identified. All of the physicochemical properties for the compounds were calculated using the DruLiTo(Drug Likeness Tool). Drug-likeness was estimated by QED(Quantitative Estimate of Druglikeness) and OB(Oral bioavailability) was checked based on the Veber's rules. Results : A total of 475 compounds were obtained by eliminating duplication among 544 compounds of 5 medicinal materials. Analysis of the physicochemical properties revealed that the most common values were MW(molecular weight) 200~300 g/mol, ALOGP(octanol-water partition coefficient) 1~2, HBA(number of hydrogen bond acceptors) 0~1, HBD(number of hydrogen bond donors) 0, PSA(polar surface area) 0~50 angstrom, ROTB(number of rotatable bonds) 1, AROM(number of aromatic rings) 0, and ALERT(number of structural alerts) 1. QED had 93% of the values between 0.2 and 0.7, and OB had 90% of the value of TRUE. Conclusions : We in this paper screened the candidate active compounds of Oryeong-san using the QED and Veber's rules. In the future, we will use the screening results to analyze the mechanism of Oryeong-san based on systems pharmacology.

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.