• 제목/요약/키워드: hydrogen bonds

검색결과 375건 처리시간 0.021초

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • 이창엽;한준수;유복렬;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Synthesis, Antioxidant and Molecular Docking Studies of (-)-Catechin Derivatives

  • Kumar, Deepak;Kumar, Raj;Ramajayam, R.;Lee, Keun Woo;Shin, Dong-Soo
    • 대한화학회지
    • /
    • 제65권2호
    • /
    • pp.106-112
    • /
    • 2021
  • 12 kinds of (-)-catechin derivatives were designed and synthesized. The catechin derivatives were evaluated their antioxidant activities using DPPH method. Most of them showed good antioxidant activity, particularly compounds 1d, 1e and 1j exhibited more activity than butylated hydroxytoluene (BHT). Molecular docking studies for compounds 1d, 1e and 1j with STAT1 showed not only sufficent characteristics binding cavity but also agreement with the observed biological activity. Acording to docking results, the compounds showed greater than hydrogen bonding, hydrophobic interactions, electrostatic interactions, and Van der Waals interactions as compared to the reference compound. They formed hydrogen bonds with important residues such as Lys566, His568, Leu570, and Phe644. The compounds showed a novel hydrogen bonding interaction with Arg649, which was not reported previously. Our results might suggest the compounds could serve as a novel anti-oxidant agent.

Coordination of an Amino Alcohol Schiff Base Ligand Toward Cd(II)

  • Mardani, Zahra;Hakimi, Mohammad;Moeini, Keyvan;Mohr, Fabian
    • 대한화학회지
    • /
    • 제63권1호
    • /
    • pp.29-36
    • /
    • 2019
  • A potentially tetradentate Schiff base ligand, 2-((2-((pyridin-2-ylmethylene)amino)ethyl)amino)ethan-1-ol (PMAE), and its cadmium(II) complex, [$Cd(PMAE)I_2$] (1), were prepared and characterized by elemental analysis, FT-IR, Raman, $^1H$ and $^{13}C$ NMR spectroscopies and single-crystal X-ray diffraction. In the crystal structure of 1, the cadmium atom has a slightly distorted square-pyramidal geometry and a $CdN_3I_2$ environment in which the PMAE acts as an $N_3$-donor. In the crystal packing of the complex, the alcohol and amine groups of the coordinated ligands participate in hydrogen bonding with iodide ions and form $R^2{_2}(14)$ and $R^2{_2}(8)$ hydrogen bond motifs, respectively. In addition to the hydrogen bonds, the crystal network is stabilized by ${\pi}-{\pi}$ stacking interactions between pyridine rings. The thermodynamic stability of the isolated ligand and its cadmium complex along with their charge distribution patterns were studied by DFT and NBO analysis.

Crystal Structure of Thiamin Tetrahydrofurfuryl Disulfide

  • Shin, Whan-Chul;Kim, Young-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.331-334
    • /
    • 1986
  • The crystal structure of thiamin tetrahydrofurfuryl disulfide, one of the ring-opened derivatives of thiamin, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 8.704 (1), b = 11.207 (2), c = 21.260 (3) ${\AA}$ and ${\beta}$ = 92.44 (2)$^{circ}$, space group P2$_{1}$/c and Z = 4. The structure was solved by direct methods and refined to R = 0.076 for 1252 observed reflections measured on a diffractometer. The molecule assumes a folded conformation in which the pyrimidine and the tetrahydrofurfuryl rings are on the same side of the ethylenic plane. The pyrimidinyl, N-formyl and ethylenic planes are mutually perpendicular to each other and the N(3)-C(4) bond retains a single bond character. The structure is stabilized by an intramolecular N(4'${\alpha})-H{\cdots}O(2{\alpha}$) hydrogen bond. The molecules are connected via N(4'${\alpha}$)-H{\cdots}(N3')$ and O(5${\gamma})-H{\cdots}(N1')$ hydrogen bonds, forming a two-dimensional hydrogen-bonding network. The tetrahydrofurfuryl ring is dynamically disordered. The overall conformation as well as the packing mode is very similar to that of thiamin propyl disulfide.

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

소성변형의 분자론 (제1보). 이론 (Molecular Theory of Plastic Deformation (I). Theory)

  • 김창홍;이태규
    • 대한화학회지
    • /
    • 제21권5호
    • /
    • pp.330-338
    • /
    • 1977
  • 고체의 소성변형을 설명하기 위하여 다음과 같은 가정을 하였다. (1) 고체의 소성변형은 크게 두 가지 기구 즉 dislocation 운동과 grain boundary 운동에 의하여 일어난다. (2) Dislocation 운동에 있어서 유동 단위들은 역학적 모형으로 나타내면 다종의 Maxwell 단위들의 평행연결형으로 되고 grain boundary 유동단위들도 다종의 Maxwell 단위들의 평행연결로 표현된다. 이를 물리적으로 설명하면 같은 부류의 유동단위들은 모두 같은 shear plane에서 같은 shear rate로 흐름을 의미한다. (3) Grain boundary 유동단위들과 dislocation 유동단위들 같은 서로 직렬 연결되어 있다. 이는 물리적으로 고체내에서 stress는 균일하게 작용하나 shear rate는 shear plane 의 종류(dislocation 운동면과 grain boundary 운동면)에 따라 달리 나타남을 의미한다. (4) Dislocation 유동단위들과 grain boundary 운동단위들의 운동은 그들의 흐름을 방해하는 장애물 근방의 원자 또는 분자들이 확산해 나가므로써 가능하게 된다. 이러한 가정하에 반응속도론을 적용하여 shear rate와 shear stress를 구하는 일반식을 도출하였다. 본 연구에서는 실제로 중요한 네가지 경우에 대하여 상기 도출한 일반식을 고찰하였다.

  • PDF

P-Aminobenzaldehyde Cyclohexylthiosemicarbazone의 결정 및 분자구조 (The Crystal and Molecular Structure of P-Aminobenzaldehyde Cyclohexylthiosemicarbazone)

  • 구정회;김종희;박영자
    • 대한화학회지
    • /
    • 제25권6호
    • /
    • pp.343-350
    • /
    • 1981
  • P-Aminobenzaldehyde cyclohexylthiosemicarbazone의 결정 및 분자구조를 Computer controlled four circle diffractometer에 의한 X-선 회절방법으로 해명하였다. 결정은 공간군 C2/c의 단사형계에 속하며 단위세포 상수는 a = 12.488(2), b = 12.276(4), c = 19.997(6)${\AA}$, ${\beta}=103.55(3)^{\circ}$이고 z = 8이다. 구조는 중원자법과 Fourier 방법으로 규명하였으며 full-matrix 최소자승법으로 정밀화하였다. 최종 R값은 2712개의 회절반점에 대하여 0.058이었다. 분자는 N(2)-N(3)결합에대하여 C(8)-S는 trans, C(8)-N(1)은 cis형으로 놓여 있으며 N(1)과 N(3) 원자들이 분자내 수소결합을 만들고 있다. 의자모양의 cyclohexane 고리는 benzene 고리와 $40.7^{\circ}$의 면각을 이루고 있다. 결정내의 분자들은 수소 결합들로 모여져 있는데 $N(2)-H{\ldots}S$ 수소결합이 분자들을 이합체 꼴을 만들며 이들 분자들을 $N-H{\ldots}N$ 수소결합들이 이어주고 있다.

  • PDF

Sulfadiazine의 結晶 및 分子構造 (The Crystal and Molecular Structure of Sulfadiazine)

  • 신현소;인권식;금훈섭;구정회
    • 대한화학회지
    • /
    • 제18권5호
    • /
    • pp.329-340
    • /
    • 1974
  • X-선 회절법을 이용하여 sulfadiazine, $C_{10}H_{10}N_4O_2S$, 의 결정 및 분자 구조를 규명하였다. Acetone 과 ethanol의 혼합용액으로 부터 얻은 결정은 일사축계에 속하며, 단위세포에는 4분자가 있고, 공간군은 P21/c이다. 단위세포 상수는 $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$이다. 결정구조는 3차원적인 와이센버그사진으로 부터 얻어진 실험치를 이용하여 패터슨합성과 프리에합성을 하고 이를 해석하여 밝혀냈다. 수소원자를 제외한 원자들의 좌표치는 최소자승법으로 정밀화 하였으며, 최종 R값은 관측된 1517개의 독립반사에 대하여 0.15이다. 벤젠고리와 피리미딘고리의 두 평면이 이루는 각은 $76^{\circ}$이고, S-N(1)결합을 중심으로 한 N(1)-C(1) 결합과 S-C(5)결합이 이루는 conformational angle은 $77^{\circ}$로서 gauche형을 하고 있다. 이미노기의 질소원자, N(1)은 대칭중심에 의하여 옮겨지는 다른 분자의 피리미딘고리의 질소원자, N(3)와 $N-H{\cdots}N$형의 수소결합을 이루고 있으며, 아미노기의 질소원자, N(4)는 b축의 거리만큼 떨어져 있는 다른분자의 산소원자, O(1) 및 O(2)와 두개의 $N-H{\cdots}O$형 수소결합을 이루고 있다. 이들 수소결합의 2차원적 그물은 (100)면에 평행한 무한한 분자층을 형성하며 인접분자층 사이에는 van der Waals의 힘에 의하여 결합되어 있다

  • PDF

Spectral and Geometrical Study of Two Cadmium Complexes, mer-R,S-[Cd(aepn)2]X2 (X: I-, Cl-, aepn: N-(2-Aminoethyl)-1,3-propanediamine) Supported by Solution Experiments

  • Hakimi, Mohammad;Mardani, Zahra;Moeini, Keyvan
    • 대한화학회지
    • /
    • 제57권4호
    • /
    • pp.447-454
    • /
    • 2013
  • In this research, two new complexes of N-(2-aminoethyl)-1,3-propanediamine (aepn), $[Cd(aepn)_2]I_2$ (1) and $[Cd(aepn)_2]Cl_2{\cdots}H_2O$ (2), were prepared and identified by elemental analysis, FT-IR, Raman spectroscopy and single-crystal X-ray diffraction. Geometry around the cadmium atom in two complexes by coordination of six nitrogen atoms of two aepn is distorted octahedral. If distortion in the mer-$[Cd(aepn)_2]^{2+}$ cation is disregarded, it has a $C_2$ axis and $C_2$ symmetry. The cyclic voltammetry experiments were carried out to study the complexation process. Two structural surveys on coordination modes and complexes of aepn are presented. A study was carried out using CSD data to estimate the averages of bond lengths for different types of the Cd-N bonds. It was found that the intermolecular $N-H{\cdots}I$, $C-H{\cdots}I$ hydrogen bonds in 1 and $N-H{\cdots}Cl$, $N-H{\cdots}O$, $C-H{\cdots}O$, $O-H{\cdots}Cl$ in 2 stabilized the crystal networks.

Using Harmonic Analysis and Optimization to Study Macromolecular Dynamics

  • Kim Moon-K.;Jang Yun-Ho;Jeong Jay-I.
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.382-393
    • /
    • 2006
  • Mechanical system dynamics plays an important role in the area of computational structural biology. Elastic network models (ENMs) for macromolecules (e.g., polymers, proteins, and nucleic acids such as DNA and RNA) have been developed to understand the relationship between their structure and biological function. For example. a protein, which is basically a folded polypeptide chain, can be simply modeled as a mass-spring system from the mechanical viewpoint. Since the conformational flexibility of a protein is dominantly subject to its chemical bond interactions (e.g., covalent bonds, salt bridges, and hydrogen bonds), these constraints can be modeled as linear spring connections between spatially proximal representatives in a variety of coarse-grained ENMs. Coarse-graining approaches enable one to simulate harmonic and anharmonic motions of large macromolecules in a PC, while all-atom based molecular dynamics (MD) simulation has been conventionally performed with an aid of supercomputer. A harmonic analysis of a macroscopic mechanical system, called normal mode analysis, has been adopted to analyze thermal fluctuations of a microscopic biological system around its equilibrium state. Furthermore, a structure-based system optimization, called elastic network interpolation, has been developed to predict nonlinear transition (or folding) pathways between two different functional states of a same macromolecule. The good agreement of simulation and experiment allows the employment of coarse-grained ENMs as a versatile tool for the study of macromolecular dynamics.