DAEHAN HWAHAK HWOEIEE (Journal of the Korean Chemical Society) Vol. 25, No. 6, 1981 Printed in the Republic of Korea

P-Aminobenzaldehyde Cyclohexylthiosemicarbazone의 결정 및 분자구조

具廷會*·金鎭姬·朴英子[†] 숙명여자대학교 이과대학 화학과 *서울대학교 자연과학대학 화학과 (1981. 5. 21 접수)

The Crystal and Molecular Structure of P-Aminobenzaldehyde Cyclohexylthiosemicarbazone.

Chung Hoe Koo*, Chong Hee Kim and Young Ja Park[†]

Department of Chemistry, College of Sciences, Sook Myung Women's University, Seoul 140, Korea *Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151, Korea (Received May 21, 1981)

요 약. P-Aminobenzaldehyde cyclobexylthiosemicarbazone의 결정 및 분자구조를 Computer controlled four circle diffractometer 에 의한 X-선 회절방법으로 해명하였다. 결정은 공간군 C2/c 의 단사형제에 속하며 단위세포 상수는 a=12.488(2), b=12.276(4), c=19.997(6)Å, β=103.55(3)° 이고 z=8이다. 구조는 중원자법과 Fourier 방법으로 규명하였으며 full-matrix 최소자승법으로 정 밀화하였다. 최종 R 값은 2712개의 회절반점에 대하여 0.058이었다. 분자는 N(2)-N(3) 결합에 대하여 C(8)-S는 trans, C(8)-N(1)은 cis 형으로 놓여 있으며 N(1)과 N(3) 원자들이 분자대 수소결합 을 만들고 있다. 의자모양의 cyclobexane 고리는 benzene 고리와 40.7°의 면자을 이루고 있다. 결 정내의 분자들은 수소 결합들로 모여져 있는데 N(2)-H…S 수소결합이 분자들을 이합체 꼴을 만들 며 이들 분자들을 N-H…N 수소결합들이 이어주고 있다.

ABSTRACT. The crystal and molecular structure of P-aminobenzaldehyde cyclohexylthiosemicarbazone, $C_{14}H_{20}N_4S$, has been determined from 2712 integrated intensities measured on a computer controlled four circle diffractometer with monochromated CuK_a X-ray radiation. The crystals are monoclinic, space group C2/c with eight molecules in a unit cell of dimensions, a=12.488(2), b=12.276(4), c=19.997(6) Å and $\beta=103.55(3)^\circ$. The structure was solved by Patterson and Fourier method and refined by a full-matrix least squares methods to a final R value of 0.058 for all reflections. The C(8)-S bond is *trans* to N(2)-N(3) and C(8)-N(1) is *cis* to N(2)-N(3) bond. The cyclohexane ring has chair conformation and makes an angle of 40.7° with the benzene ring. The molecules are linked by N(2)H...S hydrogen bonds into dimer-like units which are held together by N-H...N hydrogen bonds. Sulfur accepts second rather weak hydrogen bond from N(4). An intramolecular hydrogen bond exists between N(1) and N(3) atoms.

344

서 론

Thiosemicarbazone 과 그와 관련된 일련의 분 자들의 구조가 밝혀지고 있는데 그중 구정회 교 수 연구실에서 해명된 구조는 Salicylaldehyde 4-piperidinothiosemicarbazone¹, P-acetylaminobenzaldehyde thiosemicarbazone(thiacetazone)², piperidinothiosemicarbazide³, morpholinothiosemicarbazide⁴, O-chlorobenzaldehyde cyclohexylthiosemicarbazone⁵ 등이고 P-dimethylaminobenzaldehyde *p*-ethoxyphenylthiosemicarbazone⁶이 진행중에 있다.

Thiosemicarbazone 유도체들은 그 기간을 아 루는 aldehyde 와 ketone 에 따라서 달라지는 항 균성을 가지고 있다. 따라서 본 연구는 분자구 조를 규명하여 항균성를 설명하는 데 필요한 분 자수준의 기초를 마련코저 한다.

특히 thiosemicarbazone 계열의 결정구조에 나 타나는 NH…S 수소결합의 형태와 길이 등을^{1~11} 본화합물의 결정구조와 종합 비교하고저 한다. 이리하여 이들 구조들에서 자주 나타나는 수소결 합에 어떠한 형태가 있는지를 연구하고저 한다.

실험과 구조해석

P-Aminobenzaldehyde cyclohexylthiosemicarbazone 은 서울대학교 약학대학의 조윤성 교수 연구실에서 합성한 것을 사용하였다¹². 단결정 은 acetone 용액을 실온에서 서서히 증발시켜 만 들었다. 넓적한 노란색의 투명한 결정의 밀도는 benzene 과 carbon tetrachloride 의 혼합물을 써 서 부유법으로 측정하였다. 결정의 공간군은 Weissenberg 사진 촬영에서 얻어진 회절세기의 계통적인 소멸, 밀도측정 및 최종 구조 결정에서 얻어진 바와 같이 C2/c 이다.

정밀한 단위세포 상수와 X-선 회절세기들은 NONIUS CAD-4 four-circle diffractometer 를 사용하여 단색 파장 CuK_a X-선으로 측정하였 다. 적분 회절 세기는 2<20<68° 범위에서 θ : 20 scan mode 로 측정하였다. 20 scan 폭은 1.4° 를 기준으로 하여 스페트림 분산을 고려하여 변 경시키면서 1분당 2° 속도로 측정하였다. 실험 에 사용한 결정의 크기는 대략 0.5×0.5×0.5mm 이고 b축에 나란하게 불여서 측정하였다. 모 두 얻은 대칭-독립적인 회절 반점 수는 2712개 이고 회절강도가 2 $\sigma(I)$ 보다 큰 회절반점을 측정 반점으로 정하였다.여기에서 $\sigma^2(I) = \sigma^2 + (0.02I)^2$ 으로 $\sigma^2 는 계수통계에서 연유하는 가변도이다.$ X-Ray absorption 과 extinction 에 관한 보정은하지 않았다. 이 결정의 crystal data 는 Table 1에 표시하였다.

결정 및 분자구조는 사진촬영으로 얻은 X-선 회절세기들을 사용하여 Patterson heavy atom method 로 결정하였다. 이에 관한 예비 보고는 김종희의 논문¹³을 참조하기 바란다. 따라서 위 에서 얻은 원자 좌표들을 사용하여 구조의 경밀 화를 시작하였다. 처음 R 값은 0.35 이었다.

Block-diagonal 최소자승법과 full-matrix 최소 자승법을 사용하여 정밀화를 계속하였다. 수소 원자의 위치는 수소 아닌 원자들의 thermal parameter 를 anisotropic 으로 고쳐서 정밀화 한 후 R값이 0.105 일 때 difference Fourier synthesis 에서 결정하였다. 다음 정밀화 과정에서는 수소 원자의 좌표와 수소 원자의 isotropic thermal parameter 둘도 변경시키면서 행하였다. 최종 R 값은 0.058 이었다. 여기에서 $R = \frac{\sum |A|}{\sum |F_{obs}|}$ 이고 $A = ||F_{obs}| - |F_{cal}||$ 이다. 최소화 시킨 함수는 $\sum WA^2$ 이고 $W = -\frac{1}{\sigma^2(F_{obs})}$ 이다.

Atomic scattering factors는 S, C, O에 대하 여는 Cromer 과 Waber¹⁴ 값을, H에 대하여는 Stewart, Davidson 과 Simpson¹⁵ 값을 취하였다.

Table 1. Crystal data for P-aminobenzaldehyde cyclohexylthiosemicarbazone.

Journal of the Korean Chemical Society

Table 2. Fractional atomic coordinates and thermal parameters in P-aminobenzaldehyde cyclohexylthiosemicarbazone. Temperature factor expression used: exp $[-(h^2 \beta_{11}+k^2 \beta_{22}+l^2 \beta_{33}+2 hk \beta_{12}+2 hl \beta+2 kl \beta_{23})]$. Standard deviations given in parentheses refer to the least significant digits of the parameters. Values for H are ×10³. All others are ×10⁴.

	x	y	2	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
S	-2623.0(5)	721.5(4)	-21.3(3)	63.0(5)	39.7(4)	26.4(2)	-0.2(3)	-17.8(2) 1.9(2)
N (1)	- 855(2)	152(1)	961(1)	54(1)	38(1)	22(1)	-1(1)	-9(1)	1(1)
N (2)	-1057(1)	1960(1)	700(1)	58(1)	38(1)	21(1)	3(1)	-11(1)	-1(1)
N (3)	-163(1)	2196(1)	1236(1)	52(1)	41(1)	19(1)	4(1)	-8(1)	-4(1)
N (4)	3236(2)	5164(2)	3458(1)	57(1)	70(1)	31(1)	-3(1)	-7(I)	-12(1)
C (1)	2498(2)	4661 (2)	2909(1)	42(1)	52(1)	27(1)	4(1)	0(1)	-10(1)
C (2)	2113(2)	3604(2)	2987(1)	56(2)	63(2)	21(1)	-0(1)	1(1)	-1(1)
C (3)	1379(2)	3112(2)	2449(1)	55(2)	46(1)	24(1)	-1(1)	1(1)	-1(1)
C (4)	1017(2)	3631(2)	1815(I)	45(1)	41(1)	22(1)	5(1)	-0(1)	-6(1)
C (5)	1435(2)	4666(2)	1737(1)	59(2)	45(1)	27(1)	7(1)	-0(1)	1(1)
C (6)	2160(2)	5169(2)	2275(1)	58(2)	41(1)	34(1)	-3(1)	-1(1)	-4(1)
C (7)	168(2)	3183(2)	1253(1)	54(1)	43(1)	22(1)	5(1)	-2(1)	-1(1)
C (8)	-1441(2)	935(2)	588(1)	52(I)	39(1)	18(1)	5(1)	-2(1)	1(1)
C (9)	-1147(2)	-1009(2)	927(1)	52(2)	35(1)	25(1)	I(1)	-1(1)	3(1)
C (10)	-831(2)	-1473(2)	1646(1)	96(2)	57(2)	26(1)	7(2)	13(1)	8(1)
C (11)	-1143(3)	-2676(2)	1634(2)	125(3)	63(2)	48(1)	3(2)	25(2)	24(1)
C (12)	-599(3)	-3308(2)	1166(2)	92(2)	42(2)	59(1)	9(2)	3(1)	7(1)
C (13)	-855(4)	-2843(2)	455(2)	149(4)	53(2)	46(1)	3(2)	14(2)	-15(1)
C (14)	601(3)	- 1622(2)	442(1)	123(3)	56(2)	28(1)	-3(2)	17(1)	-5(1)

	x	y	z	B
H(N1)	-26(3)	32(2)	121(2)	5.8(7)
H(N2)	-157(2)	255(2)	41(2)	5.6(6)
H(N4)	309(2)	494 (2)	387(2)	5.9(7)
H'(N4)	334(4)	596(4)	342(2)	12.1(11)
H(C2)	232(2)	322(2)	344(1)	4.5(6)
H(C3)	97(3)	236(2)	248(2)	6.7(8)
H(C5)	119(3)	503(3)	129(2)	7.2(8)
H(C6)	251(3)	589(3)	226(2)	7.2(8)
H(C7)	-23(2)	372(2)	85(1)	5.4(6)
H(C9)	-194(2)		75(1)	5.6(6)
H(C10)	-126(3)	-109(2)	195(2)	6.2(7)
H'(C10)	3(3)	-144(2)	182(2)	7.0(8)
H(C11)	-207(3)	-270(2)	142(2)	6.9(8)
H'(C11)	-100(3)	-299(3)	215(2)	8.7(9)
H(C12)	23(3)	-325(3)	136(2)	7.6(9)
H'(C12)	-90(3)	-405(3)	121(2)	6.8(8)
H(C13)	-46(3)	-316(3)	16(2)	8.5(10)
H'(C13)	-169(4)	-307(3)	23(2)	9.9(11)
H(C14)	25(3)	-156(2)	65(2)	6.6(8)
H'(C14)	-90(2)	-127(2)	-5(2)	5.6(6)

Table 2 에 원자들의 좌표와 thermal parameter 를 표시하였다*.

결과 및 고찰

분자구조. 분자의 배열을 Fig. 1에 ORTEP stereo pair 로 그렸다. 분자내의 결합길이와 결 합각을 Fig. 2에 표시하였다. 결합길이와 결합 각의 표준 편차의 평균값은 각각 0.003Å과 0.2° 이고 수소와의 결합길이와 결합각에 대하여는 각각 0.03Å과 2°이다.

Benzene 고리는 거의 평면 구조를 이루고 있다. 원자 N(4)는 이 평면에 있으나 C(7)은 이 평면에서 약간 벗어나 있다. benzen 고리의 C-C 결합길이는 1.377Å에서 1.406Å 사이의 값으 로 그 평균값은 1.390(11)Å으로 conjugated C-C 결합길이 값 1.39Å과 잘 일치하고 있다.

*Structure factor amplitude 의 실험값과 개산값이 필 요한 분은 저자에게 청구하기 바란다. 具廷會・金鍾姫・朴英子

Fig. 1. ORTEP stereoscopic pair showing the molecular configuration of P-aminobenzaldehyde cyclohexylthiosemicarbazone.

Fig. 2. Bond lengths and angles of P-aminobenzaldehyde cyclohexylthiosemicarbazone. (a) Bond lengths (Å) with atomic numbering; (b) Valence angles(°).

Journal of the Korean Chemical Society

346

결합길이 C(2)-C(3)와 C(5)-C(6)는 1.377 과 1.379Å으로 다른 네개의 결합보다 상당히 짧 다. 이는 benzene 구조에서 전자주게와 전자 받 게 기가 para 위치에 각각 치환될 때 일어나는 공명구조들로 예측된 바와 일치한다.

Cyclohexane ring 은 normal chair conformation 으로 되어 있고 thiosemicarbazone 부분이 적도 방향으로 C(9)과 결합되어 있다. 원자 C(10), C(11), C(13)과 C(14)가 ±0.019 Å 범위 내에서 평면을 이루며 C(9)과 C(12)가 각각 이 평면에서 0.663과 -0.632 Å 벗어나 있다. C-C 결합길이는 1.495 Å에서 1.534 Å 사이의 값으로 그 평균값은 1.512(16) Å 이다.

Thiosemicarbazone 부분의 C(8)-N 결합길이 는 현저하게 다르다. C(8)-N(1)은 1.322Å, C(8)-N(2)는 1.346Å으로 다른 thiosemicarbazone 분자에서도 같은 경향이 있으며 8개의 분자 들^{2,7~10,16}에서의 평균값은 각각 1.320 파 1.347 Å이다. 이 결합길이의 차이는 C(8)-S, N(2)-N(3), N(3)-C(7) 결합길이와도 서로 관련이 되 어 있는데 이들의 thiosemicarbazone 분자들에서 의 평균값은 각각 1.690, 1.376, 1.283Å이다. C(8)-S, C(8)-N(1) 결합이 순수한 이중 결합과 단일 결합으로 되어 있기 보다는 이중 결합성이 강한 결합으로 되어 있어 C(8)-S 길이가 길어 지고 C(8)-N(1) 길이가 짧아진다. C(8)-N(2) 와 N(2)-N(3)는 약한 이중 결합성을 갖는 결합 이 된다. C(7)-N(3)는 순수한 C-N 이중 결합 보다 약간 길어서 1.278Å이다. C(7)-N(3)가 길어지고 N(2)-N(3)가 짧아지는 현상은 thiosemicarbazone 사슬 부분내에서의 공명뿐 아니라 ▶ aminobenzaldehyde 를 포함하여 전체 비편재 화된 계로 분자를 고려하면 설명될 수 있다. 또한 C(4)-C(7), C(7)-N(3) 결합길이를 보면 C(7)은 순수한 sp² 흔성궤도에서 상당히 벗어나 있으며, benzene 평면에서도 벗어나 있음을 알 수 있다.

C(8)-N(2) 결합 주위의 conformation 을 살 펴보면 N(2)-N(3)에 대하여 C(8)-S는 trans, C(8)-N(1)은 cis 형으로 되어 있다. 만약 C(8)-N(2) 결합 주위로 분자를 180° 돌려 C(8)-S를 cis 형으로 만들면 S원자의 lone pair electron 과 N(3) 원자의 lone pair electron 이 너무 가 까와져서 높은 strain energy를 갖는 불안정한 분자가 될 것이다. 또한 이 화합물에서 얻어진 conformation 은 N(1)과 N(3)가 분자내 수소결 합을 할 수 있도록 만들어 준다. N(1)-H…N(3) 의 결합각이 108°이고 N(1)…N(3) 길이가 2.669Å인 비교적 약한 결합이 생긴다. 이와 같은 약한 분자내 수소결합은 O-chlorobenzaldehyde cyclohexylthiosemicarbazone⁵, 2-formyl-5-benzylpyridine thiosemicarbazone⁷, 2-formyl-4-morpholinopyridine thiosemicarbazone¹⁰ 결정 구조들과 매우 비슷하다.

분자 전체의 모양을 Table 3의 평면들간의 각 도로 보면 benzene 과 thiosemicarbazone (Table 3의 (b) plane)과의 각도는 28.3°, 이 평면과 cyclohexane 과는 63.8°, cyclohexane 과 benzene 과는 40.7°의 면각을 이루고 있다.

Table 3. Least squares best planes with atomic displacements. Equations of the planes Ax+By+Cz=D, where x, y, z, D are in Å. Plane constants with respect to crystallographic axes. Displacements in Å from best plane. Atoms with an asterisk were excluded from the calculation of the best plane.

Benzene					
-0.864 x + 0.399 y + 0.500 z = 2.484					
C (1)	0.012	C (2)	-0.012		
C (3)	0.001	C (4)	0.011		
C (5)	-0.011	C (6)	-0.001		
C (7)*	0.146	N (4)*	0.010		
Cyclohex	ane				
-0.907 a	x + 0.215 y - 0.2	140 z = 0.109			
C (10)	-0.019	C (11)	0.019		
C (13)	-0.019	C (14)	0.019		
C (9)*	0.663	C (12)*	-0.632		
Thiosemi	carbazone				
(a) $-0.710 x + 0.114 y + 0.842 z = 2.392$					
S	-0.002	N (1)	-0.002		
N (2)	-0.002	C (8)	0.006		
N (3)*	0.140	C (9)*	0.045		
(b) $-0.731 x + 0.106 y + 0.826 z = 2.425$					
S	0.029	N (1)	-0.044		
N (2)	-0.047	N (3)	0.053		
C (8)	-0.015	C (9)	0.023		

347

具廷會・金鍾姫・朴英子

Fig. 3a. The crystal structure of P-aminobenzaldehyde cyclohexylthiosemicarbazone, origin in the remote lower left corner, b pointing to the right, c up and a forward;

Fig. 3b. A projecton of the structure with net work of hydrogen bonds.

Journal of the Korean Chemical Society

348

황을 중심으로 하여서는 두 개의 수소 결합이 연결되어 있다. 그 중 하나는 N(2)-H…S 결합 으로 이 결합은 대칭중심(-1/4,1/4,0)으로 관 계되어 있는 두 개의 분자들을 이합체 꼴 단위 로 붙들어주고 있다. 다른 하나는 N(4)-H…S 수소 결합으로 N(4)…S 결합길이가 3.647Å으 로 상당히 약한 수소 결합이다.

황을 포함하고 있는 수소 결합들을 thiosemicarbazone 과 thiosemicarbazide 결정들에서 비교 한 것을 Table 5 에 요약하였다. 대부분의 화합 물들에서는 대청중심을 가운데 두고 놓여 있는 분자들아 수소 결합으로 연결되어 이합체를 만 드는 방식을 취하고 있다. 두 개의 독립된 수소 결합으로 이합체 꼴 단위 두 개를 만드는 화합 물들도 세 개나 된다. 특히 piperidinothiosemicarbazide³에서는 황이 수소 결합 두 개를 한 단위세포 떨어져 위와 아래에 있는 N(1)에서 각 각 받아서 이들 독립된 수소 결합들이 네 개의 수소 결합을 만들면서 두 개의 이합체 꼴단위가 되어 번갈아 가면서 *b* 축을 따라서 zigzag 사술 을 만들고 있다.

5-Hydroxy-2-formylpyridine thiosemicarba-

zone ⁸ 과 morpholinothiosemicarba	zide ⁴ 는	사슬
형의 수소 결합만을 이루고 있다.	12개의	화합
물들 중에서 salicylaldehyde-4-pi	iperiding	othio-
semicarbazone ¹ 의 황만이 수소 결한	합을 하	고 있
들지않다. 따라서 이들 thiosemica	rbazone	화합

Table 4. Distances (Å) and angles (\circ) in hydrogen bonds.

А-НВ	A-H	AB	
N(1)-H…N(3)	0.82(3)	2.669(2)	108(3)
$N(1)-H\cdots N(4)_{\alpha}$	0.82(3)	3.204(3)	150(3)
$N(2)-H\cdots S_b$	1.05(3)	3.407(2)	161 (2)
$N(4)-H\cdots S_e$	0.93(3)	3.647(2)	173(3)
$N(4)-H'\cdots N(3)_d$	1.00(5)	3.420(3)	131(3)
Other intermolecu	lar contac	ts shorter tha	m 3.5Å,
N(2)C(14),		3.450(3)	
C(3)C(3)f		3.498(3)	
symmetry code			
(a) 0.5-x, -	0.5 + y,	0.5-2;	
(b) = -0.5 - x,	0.5 - y,	-±;	
(c) $0.5+x$,	0.5-y,	0.5+z;	
(d) 0.5 $-x$,	0.5 + y,	0.5-z;	
$(e) \qquad -x,$	—y,	-==;	
$(f) -x_i$	у,	0.5 - z.	

 $N(1)H \cdots S = C \quad N(2)H \cdots S = C \quad NH_{o'her} \cdots S = C$ C=SMode P-Aminobenzaldehyde 3. 41 Å 3.65 Å 1.70 Å Dimer, chain cyclohexylthiosemicarbazone P-Acetylbenzaldehyde 3.40 1.70 Dimer, chain thiosemicarbazone2 3.38 O-chlorobenzaldehyde Dimer 3.34 1.75cyclohexylthiosemicarbazone5 2-formyl-5-benzylpyridine Dimer 1.68 thiosemicarbazone 3.42 Dimer, dimer 3.42 3.541.69Acetone thiosemicarbazone⁸ 5-Hydroxy-2-formylpyridine Chain thiosemicarbazone sesquihydrate8 3.50 1.71 4-formylpyridine Dimer 1.68 thiosemicarbazone9 3.50 2-formyl-4-morpholino-Dimer pyridine thiosemicarbazone¹⁰ 3.421.69Salicylaldehyde-4-piperidino No H-bond 1.66 thiosemicarbazone Thiosemicarbazide11 3.30 1.69 Dimer, dimer 3.41 Dimer Piperidinothiosemicarbazide³ 3.39 1.67 Dimer 3.28Chain Morpholinothiosemicarbazide4 3.48 1.67 3.49 Chain

Table 5. Distances of hydrogen bonds involving sulfur in various thiosemicarbazones.

具廷會・金鍾姫・朴英子

물에서는 N-H…S의 이합체 꼴 단위를 만드는 수소결합의 방식이 절대적으로 우세하다 하겠다. 수소 결합길이는 3.28에서 3.54Å 사이의 값으 로 평균값은 3.42(8)Å이다(3.65Å은 계산에서 제외하였다). 이합체 꼴형과 사슬형에서의 결합 길이 차이는 나타나지 않으며 C=S 결합길이와 의 상관 관계도 보소주고 있지 못하다.

N(1)-H는 N(4)와 분자간 수소결합과 N(3) 와 약한 분자내 수소결합을 하여 bifurcated 수 소결합을 하고 있다. N(4)는 두 개의 수소결합 을 각각 S와 N(3)에 주고 한 개의 수소결합은 N(1)에서 받고 있다. 결과적으로 N(3)는 분자 간과 분자내의 두 개의 수소 결합 받게로 작용 하고 있다.

결정내의 분자들은 수소 결합과 또한 van der waals 힘에 의하여 모여져 있다.

REFERENCES

- 1. Y. J. Lee, J. Korean Chem. Soc., 20, 3 (1976).
- Hyun So Shin, Ph. D. Dissertation, Seoul National University (1979).
- C. H. Koo, H. S. Kim and C. H. Chang, J. Korean Chem. Soc., 19, 85 (1975).
- Y. J. Lee, H. S. Kim, C. H. Koo and H. S. Shin, J. Korean Chem. Soc., 17, 105 (1973).

- 5. C. H. Chang, M.S. Thesis, Seoul National University (1974).
- 6. I. W. Suh, Y. J. Park and Y. S. Lee, private communication.
- J. N. Brown and K. C. Agrawal, Acta Cryst., B34, 2038 (1978).
- G. J. Palenik, D. F. Rendle and W. S. Carter Acta Cryst., B 30, 2390 (1974).
- R. Restivo and G. J. Palenik, Acta Cryst., B 26, 1397 (1970).
- J. N. Brown and K. C. Agrawal, Acta Cryst., B 34, 1002 (1978).
- P. Domiano, G. F. Gasparri, M. Nardelli and P. Sgarabotto, *Acta Cryst.*, **B 25**, 343 (1969).
- 12. Y. S. Chough and W. H. Kim, J. Pharmaceutical Soc. of Korea, 15, 93 (1971).
- C. H. Kim, M. S. Thesis, Sook Myung Women's University (1977).
- D. T. Cromer and J. T. Waber, Acta Cryst., 18, 104 (1965).
- 15. R. F. Stewart, E. R. Davidson and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
- E. J. Gabe, M. R. Taylor, J. P. Glusker, J. A. Minkim and A. L. Patterson, *Acta Cryst.*, **B 25**, 1620 (1969).