• Title/Summary/Keyword: hydrogen bonds

Search Result 375, Processing Time 0.026 seconds

Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation (과산화수소/초음파를 이용한 알지네이트의 저분자화)

  • Choi, Su-Kyoung;Choi, Yoo-Sung
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • A high molecular weight natural sodium alginate (HMWSAs) was depolymerized by hydrogen peroxide ($H_2O_2$) with ultrasonic irradiation. The effects of the reaction conditions such as reaction temperature, reaction time, hydrogen peroxide concentration and ultrasonic irradiation time on the molecular weights and the end groups of the depolymerized alginates were investigated. It was revealed that depolymerization occurred through the breakage of 1,4-glycosidic bonds of sodium alginate and the formation of formate groups on the main chain under certain conditions. The changes in molecular weight were monitored by GPC-MALS. The molecular weight of 2 wt% alginate solution decreased from 450 to 15.9 kDa for 0.5 hrs at 50 $^{\circ}C$ under an appropriate ultrasonic irradiation. The PDI(polydispersity index)s of the alginate depolymerized in this study were considerably narrow in comparison with those obtained from the other chemical degradation method. The PDIs were in the range of 1.5~2.5 in any reaction conditions employed in this study.

Cryoscopy of Amine-Polytungstates (다중텅그스텐산 아민염의 분자량 측정)

  • Pyun, Chong-Hong;Sohn, Youn-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.126-131
    • /
    • 1974
  • Trioctylamine-and tricaprylylmethylammonium chloride-tungstate salts have been prepared by solvent extraction from the sodium tungstate solution of various acidities(pH = 2, 4, 6). The molecular weights of the amine-tungstate salts thus obtained could be cryoscopically measured in benzene by means of a home-built Wheatstone bridge utilizing thermistor with sensitivity of 1/$4000^{\circ}C$. The cryoscopic data along with the results of chemical analysis and infrared spectra of the salts indicate that the amine-tungstates prepared at pH = 2 and 4 are all metatungstate whereas the salt obtained at pH = 6 is an unknown form quite different from the expected paratungstate.R = 0.14. By hydrogen bonding a guanidyl nitrogen of a sulfaguanidine molecule is linked to the sulfonyl oxygens of the other molecules indirectly through two different water molecules. The role of water molecule is both a .nor and an acceptor in hydrogen-bonding formation and these hydrogen bonds are tetrahedrally o?ented. The hydrogen-bonding networks form infinite molecular layers parallel to (001) plane.

  • PDF

Surface Modification of Polytetrafluoroethylene by 1 keV Argon and Hydrogen Irradiated in Nitrogen and Ammonia Gas Environment (질소와 암모니아 존재하에서 1 keV 에너지의 알곤과 수소 이온 조사에 의한 PTFE(polytetrafluoroethylene)의 표면형상 변화연구)

  • Yeu, Dae-Hwan;Kim, Ki-Hwan;Kang, Dong-Yeob;Kim, Joong-Soo;Koh, Seok-Keun;Kim, Hyun-Joo
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.367-372
    • /
    • 2006
  • Polytetrafluoroethylene (PTFE) surface was modified for improving hydrophilicity by ion irradiation in environmental gas of $N_2$ and $NH_3$, respectively. The water contact angle onto the PTFE surface increased from $104{\circ}$ to over $140{\circ}$ by Ar ion irradiation in $N_2$ gas. In the case of $NH_3$ as environmental gas, there were a slight increase of contact angle from ion dose of $1{\times}10^{15}\;to\;5{\times}10^{15}\;ions/cm^2$, and its dramatic decrease to the value of 35o at the conditions of ion dose higher than $1{\times}10^{16}\;ions/cm^2$. It was found from SEM results that the surface morphology of PTFE was changed into one with filament structure after Ar ion irradiation in $N_2$ gas environments. On the contrary, Ar ion irradiation in $NH_3$ gas condition induced the PTFE surface with network structure. Hydrogen ion irradiation resulted in a little change of PTFE surface morphology, comparing with the case of Ar ion irradiation. The water contact angle of hydrogen ion irradiated PTFE surface in reactive gas decreased with increment of ion dose. Hydrogen ion irradiation could improve hydrophilicity with little change of surface morphology. It might be considered from FT-IR results that the improvement in wettability of PTFE surface by ion irradiation in $N_2$ and $NH_3$ gases could be due to the hydrophilic groups of NHx bonds.

The Crystal Structure of Hydroazonium Diphosphate, $N_2H_6H_4(PO_4)_2$ (Hydrazonium Diphosphate, $N_2H_6H_4(PO_4)_2$의 結晶構造)

  • Koo, Chung-Hoe;Ahn, Choong-Tai;Kim, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 1965
  • Hydrazonium diphosphate crystallizes with the space-group symmetry $P2_1/C.$ There are two formular units of $N_2H_6H_4(PO_4)_2$ in the unit cell, for which $a = 4.52{\pm}0.02, b = 8.06{\pm}0.03, c = 10.74{\pm}0.03{\AA}\;and\; {\beta} = 100{\pm}0.5^{\circ}.$ The determination of the crystal structure was carried out by means of Patterson, Fourier and difference syntheses. The phosphate group has configuration of nearly regular tetrahedron with the mean P-O distance of $1.55{\AA}.$ The N-N distance found is $1.40{\AA},$ which corresponds to previously reported values for the $N_2H_6^{++} \;ion \;in\; N_2H_6SO_4.$ A molecule has a transform with a center of symmetry in it. Each nitrogen atom forms three hydrogen bonds with the N…O distances 2.62, 2.79 and $2.89{\AA}.$ And a O…O hydrogen bond between different phosphate groups is found with the distance $2.63{\AA}.$ The structure is held together by three-dimensional network of the strong hydrogen bonds.

  • PDF

Microwave-assisted Preparation, Structures, and Photoluminescent Properties of [Ln(NO3)2(H2O)3(L)2](NO3)(H2O) {Ln=Tb, Eu;L=2-(4-pyridylium)ethanesulfonate, (4-pyH)+-CH2CH2-SO3-}

  • Zheng, Zhen Nu;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1859-1864
    • /
    • 2011
  • Two lanthanide complexes, $[Ln(NO_3)_2(H_2O)_3(L)_2](NO_3)(H_2O)$ {Ln = Eu (1), Tb (2); L = 2-(4-pyridylium)-ethanesulfonate, $(4-pyH)^+-CH_2CH_2-SO_3^-)$}, were prepared from lanthanide nitrate and 4-pyridineethanesulfonic acid in $H_2O$ under microwave-heating conditions. Complexes 1 and 2 are isostructural, and the lanthanide metal in both complexes is coordinated to nine oxygen atoms. The pyridyl nitrogen in the ligand is protonated to give a zwitter ion that possesses an $NH^+$ (pyridyl) positive end and an $SO_3^-$ negative end. All O-H and N-H hydrogen atoms participate in hydrogen bonds to generate a two-dimensional (complex 1) or a three-dimensional network (complex 2). Complex 1 exhibits an intense red emission, whereas complex 2 exhibits an intense green emission in the solid state at room temperature.

Structures of (4-Nitro-benzylidene)-(3-nitro-phenyl)-amine and trans-Dichlorobis (3-nitroaniline) palladium(II) ((4-Nitro-benzylidene)-(3-nitro-phenyl)-amine 및 trans-Dichlorobis(3-nitroaniline) palladium(II)의 구조)

  • Lee Hee K.;Lee Soon W.
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • A novel potential linking ligand (4-nitro-benzylidene)-(3-nitro-phenyl)-amine (1) was prepared from 4-nitrobenzaldehyde and 3-nitroaniline by the Schiff-base condensation. From the reaction between 1 and dichlorobis(benzonitrile)palladium (II) $(PdCl_2(NCPh)_2)$, an unexpected product $trans-PdCl_2(NO_2-C_6H_4-NH_2)_2$ (2) was isolated. Compounds 1 and 2 were structurally characterized by X-ray diffraction. In compound 2, the $NH_2$ hydrogen atoms in the 3-nitroaniline ligand participate in intermolecular N-H${\cdot}\;{\cdot}\;{\cdot}\;$Cl hydrogen bonds.

Crystal Structures and Thermal Properties of Two Binuclear Cd(II) Supramolecular Complexes Based on Quinolinecarboxylate Ligand

  • Hao, Hu-Jun;Yin, Xian-Hong;Lin, Cui-Wu;Wei, Shui-Qiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3255-3260
    • /
    • 2011
  • Two novel binuclear metal-organic coordination complexes $[Cd_2(L)_2(bpy)_2(H_2O)_2]{\cdot}6H_2O$ (1), $[Cd_2(L)_2(phen)_2-(H_2O)_2]{\cdot}2H_2O$ (2) (where L = 2-methylquinoline-3,4-dicarboxylate dianion, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions and characterized by single crystal Xray diffraction, spectral method (IR), elemental analysis and thermal gravimetric analysis (TGA). Both 1 and 2 consist of two Cd(II) atoms bridged by two monoatomic bridging carboxylate groups from two L ligands, and the second carboxylate group of each L is monodentately coordinated to Cd(II), creating a sevenmembered chelating ring. The coordination at each metal nucleus is completed by a water molecule and a chelating bidentate molecule. The 3D structures of the complexes are stabilized by ${\pi}-{\pi}$ stacking interactions and hydrogen-bonds.

Structure of a DNA Duplex Containing a Site-Specific Dewar Isomer: Structural Influence of the 3'-T.G base pair of the Dewar product.

  • Lee, Joon-Hwa;Choi, Byong-Seok
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.268-275
    • /
    • 2000
  • In contrast to the pyrimidine (6-4)pyrimidone photoproduct [(6-4) adduct], its Dewar valence isomer (Dewar product) is low mutagenic and produces a broad range of mutations with a 42 % replicating error frequency. In order to determine the origin of the mutagenic property of the Dewar product, we used experimental NMR restraints and molecular dynamics to determine the solution structure of a Dewar·lesion DNA decamer duplex, which contains a mismatched base pair between the 3'-T residue and an opposed G residue. The 3'-T of the Dewar lesion forms stable hydrogen bonds with the opposite G residue. The helical bending and unwinding angles of the DW/GA duplex, however, are much higher than those of the DW/AA duplex. The stable hydrogen bonding of the G 15 residue does not increase the thermal stability of the overall helix. It also does not restore the distorted backbone conformation of the DNA helix that is caused by the forming of a Dewar lesion. These structural features implicate that no thermal stability, or conformational benefits of G over A opposite the 3'-T of the Dewar lesion, facilitate the preferential incorporation of an A. This is in accordance with the A rule during translesion replication and leads to the low frequent $3'-T{\rightarrow}C$ mutation at this site.

  • PDF

Constituents of Paulownia tomentosa Stem(III): The Crystal Structure of Methyl 5-Hydroxy-dinaphtho[1,2-2',3]furan-7,12-dione-6-carboxylate

  • Park, Il-Yeong;Kim, Bak-Kwang;Kim, Yang-Bae
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.52-57
    • /
    • 1992
  • The molecular structure of a natural compound was determined by single crystal X-ray diffraction analysis. The compound was isolated by methanol extraction and repeated chromatography from the stem of Paulownia tomentosa. Yellow prismatic crystals of the compound, which were recrystallized from tetrahydrofuran, are triclinic, with a = 7.310 (6), b = 10.753(6), c = 11.586(5) ${\AA}.\;\alpha= 93.30(6),\;\beta=105.62(10),\;\gamma=109.49(7)^\circ,\;D_x=1.514,\;D_m=1.51 g/cm^3$, space group P1 and Z = 2. The structure was solved by direct method, and refined by least-squares procedure to the final R-value of 0.032 for 1271 independent reflections $(F\le3\sigma{(F))}$. The compound is one of new furanquinone analogue. The molecule has a nearly planar conformation with an intramolecular hydrogen bond. In the crystal, the planar molecules are arranged as a prallel sheet-like pattern, and these stackings are stabilized by the O-H...O type intermolecular hydrogen bonds. The other intermolecular contacts appear to be the normal van der Waals interactions.

  • PDF

The crystal and molecular structure of chlorpropamide

  • Koo, Chung-Hoe;Cho, Sung-Il;Yeon, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1980
  • Chlorpropamide, $C_{10}H_{13}N_{2}O_{3}SCI$, forms orthofombic crystals of space group $P_{2}_{ 1}2_{1}2_{1}$ with a 9.066 $\pm$ 0.004, b = 5.218 $\pm$ 0.003, c = 26, 604 $\pm$, 0.008 $\AA$, and four molecules per cell. Three dimensional photographic data were collected with Mo-K$\alpha$ radiation. The structure was determined using Patterson, Fourier and Difference syntheses methods and refined by the block-diagonal least-squares methods with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atomes. The final R value was 0.10 for the 1823 observed independent reflections. The dihedral angle between the planes through the benzene ring and the urea goup is 99$^{\circ}$. The conformational angle formed by the projection of the S-C(1) with that of N(1)-C(7) when the projection is taken along the S-N(1) bond is 76$^{\circ}$. The molecule appears to form with neighbouring molecules two hydrogen bonds, N(1)..H...O(3) and N(2)-H...0(2) of lengths 2.774 and 2.954$\AA$ respectively related by screw diads parallel to the a axis. Adjacent molecules parallel to b and c axis are bound together by van der Wasls forces.

  • PDF