• 제목/요약/키워드: hydroforming technology

검색결과 159건 처리시간 0.02초

유한요소해석에 의한 자동차용 관재액압성형 부품의 성형성 평가 (Evaluation of Formability on Hydroformed Part for Automobile Based on Finite Element Analysis)

  • 송우진;허성찬;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2008
  • Tube hydroforming process is generally consisted with pre-bending, preforming and hydroforming processes. Among forming defects which may occur in tube hydroforming such as buckling, wrinkling and bursting, the wrinkling and bursting by local instability under excessive tensile stress mode were mainly caused by thinning phenomenon in the manufacturing process. Thus the accurate prediction and suitable evaluation of the thinning phenomenon play an important role in designing and producing the successfully hydroformed parts without any failures. In this work, the formability on hydroformed part for automobile, i.e. engine cradle, was evaluated using finite element analysis. The initial tube radius, loading path with axial feeding force and internal pressure, and preformed configuration after preforming process were considered as the dominant process parameters in total tube hydroforming process. The effects on these process parameters could be confirmed through the numerical experiments with respect to several kinds of finite element simulation conditions. The degree of enhancement on formability with each process parameters such as initial tube radius, loading path and preform configuration were also compared. Therefore, it is noted that the evaluation approach of the formability on hydroformed parts for lots of industrial fields proposed in this study will provide one of feasible methods to satisfy the increasing practical demands for the improvement of the formability in tube hydroforming processes.

하이드로포밍 공정을 이용한 무용접 부품체결 기술개발에 관한 연구 (A study on the hydro-embedding technology in the tube hydroforming process)

  • 김동규;박광수;안익태;한수식;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.241-244
    • /
    • 2003
  • The productivity of hydroforming process can be increased by combining pre-forming process and post-forming process such as the bending, piercing and the embedding process. Therefore in this study, integrated studies on the hydro-embedding technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters. In the case of the embedding test the characteristics of the embedded parts, such as the shape of the screw tip, screw thread and shape of thread were investigated at various process conditions. To measure the clamping force between the embedded part and the tube, special measuring device was used.

  • PDF

하이드로포밍을 이용한 후륜 현가장치 최적설계 (The Optimization of Rear Suspension Using Hydroforming)

  • 오진호;최한호;박성호
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.481-485
    • /
    • 2008
  • The subframe type rear suspension consisting of a side member and a front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. In this study, a subframe type rear suspension by hydroforming has been developed. In designing suspension, a driving stability and durability should be considered as an important factor for the performance improvement, respectively. Thus, we focus on increasing the stiffness of suspension and decreasing the maximum stress affecting a durability cycle life. Several optimization design techniques such as shape, size, and topology optimization are implemented to meet these requirements. The shapes of rear suspension obtained from optimization are formed by using hydroforming process. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

하이드로포밍에 의한 튜브 확관에 대한 해석 (Analysis of Tube Expansion by Hydroforming)

  • 이재원;박종진
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2253-2261
    • /
    • 2002
  • Recently the hydroforming technology has drawn a lot of attention because of its capability to produce high quality and light weight parts. In the present study, the tube expansion - one of the simplest hydroforming processes, has been investigated in order to understand fundamental phenomena such as deformation characteristics and effect of process parameters. As a result, the most important process parameters, which determine the state of stress at the expanded zone, were found to be pressure and die displacement. If the stress becomes equi-axial tension at the zone, necking occurs at some distance from the weld line and develops into a crack along the axial direction. Some aspects of mechanical property measurements as well as distributions of hardness and microstructure are also discussed in this paper.

하이드로포밍을 이용한 대형차 앞차축 형상최적화에 관한 연구 (A Study on Rigid Front Axle Shape Optimization of a Commercial Vehicle by Hydforming Process)

  • 장종민;김윤규;허주행;나상묵
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.231-236
    • /
    • 2009
  • Recently, The Hydroforming technology has recognized general technique in manufacture industry. Especially automotive industry, It has applied to increase strength, and decrease weight, cost and part number. The rigid axle suspension type is widely used for truck and bus in commercial vehicles due to simplicity. To develop the hydroforming rigid axle, it is necessary to estimate of the characteristics of front suspension from the design process. In this study, the characteristics estimation of the hydroforming rigid axle is preformed using Finite Element Analysis and apply to shape optimization.

하이드로포밍을 이용한 엔진크래들 최적설계 (The Optimization Design of Engine Cradle using Hydroforming)

  • 오진호;이규민;최한호;박성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.571-575
    • /
    • 2008
  • An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.

  • PDF

알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가 (Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming)

  • 임희택;김형종;이동재;김헌영
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.138-142
    • /
    • 2006
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial fred. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D pretending on the tube hydroforming process of an automotive trailing arm were evaluated and compared with each other.

튜브 액압성형품의 가공 경화 특성 연구 (Strain Hardening Behavior in the Tube Hydroforming)

  • 박현규;임홍섭;이해경;김광순;문영훈
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.564-569
    • /
    • 2008
  • Strain hardening behavior during hydroforming has been experimentally investigated. The variation of flow stress was used as an index of strain hardening during respective processes and the flow stress was estimated from the correlationship between flow stress and effective strain. The local hardness after hydroformig was also predicted by effective strain. By using the inter-relationships between hardness-flow stress-effective strain at variable pre-strains, the strain hardening behavior during hydroforming has been successfully analyzed. The comparison of predicted hardness with measured hardness confirmed that the methodology used in this study was feasible and the strain hardening behavior can be quantitatively estimated.