• 제목/요약/키워드: hydroforming

검색결과 197건 처리시간 0.027초

플랜지 형성 액압성형시 공정변수에 따른 성형 특성 (Effect of Process Parameters on Forming Characteristics of Flange Hydroforming Process)

  • 이호진;주병돈;최민규;문영훈
    • 소성∙가공
    • /
    • 제19권2호
    • /
    • pp.113-119
    • /
    • 2010
  • Hydroforming is the technology that utilizes hydraulic pressure to form tube or sheet materials into desired shapes inside die cavities. Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength. In many case, hydroformed parts have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. In this study for the numerical process design FE analysis was performed with DYNAFORM 5.5. Die parting angle and circumferential expansion ratio was optimized. With optimized condition, bulge and hydroforming experiments to form flange were performed. Forming characteristic at various pressure conditions was analyzed and optimized internal pressure condition was evaluated. The results show that flanged parts can be successfully produced by tube hydroforming process.

열처리형 Al 압출재를 이용한 하이드로포밍 부품개발 (Development of Hydroformed Automotive Parts with Heat-treatable Aluminum Extrudates)

  • 이문용;강창룡;류성지
    • 열처리공학회지
    • /
    • 제17권3호
    • /
    • pp.165-172
    • /
    • 2004
  • Compared with the hydroforming technology for steel, the hydroforming technology for aluminum has not been actively investigated. Recently, the hydroforming of high strength aluminum tubes has attracted great interest because of its good strength to weight ratio. In this study, front side member (FSM) is fabricated with the hydroforming of aluminum tube and the mechanical properties and dimensional accuracy of the hydroformed FSM is investigated. For hydroforming process, extruded aluminum tubes with ribs to improve the structural rigidity are used. To ensure the mechanical properties, the aluminum tubes are T6 heat-treated before hydroforming.

알루미늄 튜브 하이드로포밍의 성형한계 (Forming limits of aluminum tubes in tube hydroforming)

  • 조완제;이상영;김영석;이상용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.244-248
    • /
    • 2003
  • Recently social demands of fuel economy and environmental regulations require the development of light materials and new manufacturing technologies. In this point, the aluminum tube hydroforming process which is satisfied with good strength-to-weight ratio and recyclability is innovative concept. However the level of the aluminum tube hydroforming technology is low in comparison with that of steel tube hydroforming. In this paper, the hydroformability of aluminum tubes in different heat treatments is presented. Theoretical results for forming limits of the wrinkling and bursting are compared with experimental results of aluminum tubes.

  • PDF

Hydroforming을 이용한 Tube 의 예비 가공형 설계 (Preform Designin Tube by Using the Hydroforming)

  • 이한남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.39-44
    • /
    • 1999
  • Hydroforming is a forming process enabling circular metal tubes to be produced in complex cross sections along curved axial paths With the availability of advanced machine design and control They offer advantages over stamped sheet metal in lower tooling cost and structural mass The technology is relatively new so that there is no large knowledge base to assist the fundamentals of tube hydroforming technology. The purpose of this paper is found that adaptive bending condition and contact condition for bended part has uniform thickness distribution.

  • PDF

Tube Hydroforming 공정의 성형성 평가 (Evaluation of Tube Hydroformability)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

하이드로포밍용 소재의 성형성 평가 연구 (Development of Formability Test for Tube, Hydroforming)

  • 한수식;박기철
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.631-637
    • /
    • 2000
  • The tube hydroforming technology is new key production technologies, which contribute to a light-weight cu. Because the tubes are used for hydroforming instead of the sheet materials formability test for tube is required to measure the formability of materials for hydroforming. In this Paper, a kind of formability test for tube, which can well represent the characteristics of tube hydroforming processes, is developed. Developed formability test method can consider not oかy the influence of material Properties but also contact with die and material. Some investigation was carried out to verify the effectiveness of developed formability test.

  • PDF

하이드로포밍 부품의 성형성 평가기준 적용 연구 (Study on Application of Forming Limit Criteria for Formability on Hydroforming Parts)

  • 허성찬;송우진;구태완;김정;강범수
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.833-838
    • /
    • 2007
  • In tube hydroforming process, several defective products could be obtained such as bursting, wrinkling, folding, buckling. Because, especially, bursting is most frequently occurred failure among the well known failures, it is mostly important to predict the onset of bursting failure on tube hydroforming process. For most sheet metal forming processes, strain based forming limit diagram(FLD) is used often as a criteria to estimate the possibility of onset of the failures proposed above. However, FLD has a shortcoming that it is dependent on strain path while stress based diagram is independent on strain history. Generally, tube hydroforming consists of three main processes such as pre-bending, pre-forming, and hydroforming and it means that the strain histories of final products are nonlinear. Therefore, forming limit stress diagram(FLSD) is more suitable to predict forming limit for hydroforming parts. In this study, FLSD is applied to estimate bursting failure for an engine cradle of an automobile part. Consequently, it is proved that application of FLSD to predict forming limit is available for tube hydroforming parts.

액압 성형 공정 시 플랜지부 형성을 위한 FE 해석 (FE Analysis of Hydroforming Process for Flange Forming)

  • 최민규;주병돈;이성문;이현종;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.177-180
    • /
    • 2009
  • Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength and stiffness. A hydroformed vehicle body component has an attachment flange or the like-formed as an integral part of the hydroforming process. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. This study shows analysis results that form the flanged tubular parts in the hydroforming. The thickness variations and defects during the hydroforming for flange forming could be analyzed by FE analysis. FE analysis was performed by LS-DYNA/Dynaform 5.5.

  • PDF

사각형상 플랜지 액압성형 공정 시 결함특성 분석 (Analysis of Defect Characterization in a Rectangular Shape Flange Hydroforming Process)

  • 신세계로;주병돈;한상욱;이철환;문영훈
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.275-279
    • /
    • 2013
  • The tube hydroforming process has received much attention in the automotive industry because of its advantages compared to conventional manufacturing technologies. A wide range of products such as sub-frames, camshafts, radiator frames, axles and crankshafts are made by hydroforming process. The hydroformed parts often need to be structurally joined to other components during assembly. Therefore, these automotive parts need to be manufactured with a localized attachment flange. In this study, FE forming analyses of a part with a rectangular flanged shape was performed with Dynaform 5.5. Using the optimized conditions determined numerically, hydroforming experiments were performed. Then, the characterization of defects was analyzed. Finally, the accuracy of the optimized internal pressure condition as well as that of the initial ram position were evaluated. The results demonstrated that flanged parts can be successfully produced using the tube hydroforming process.

유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구 (Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM)

  • 김정;강범수
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.302-311
    • /
    • 2002
  • A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.