• Title/Summary/Keyword: hydrodynamic wave forces

Search Result 145, Processing Time 0.026 seconds

Investigation of Hydrodynamic Force in a Portable Water Storage Tank of Reentrant Bottom Shape using Nonlinear Peregrine Model (바닥면이 오목한 이동형 소방용수 저장탱크의 수직 벽면에서의 동수력 연구: 비선형 Peregrine 모델)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.61-65
    • /
    • 2019
  • In the present study, the hydrodynamic force affected by a lapping wave induced by supplied falling water acting on the vertical wall of a portable water storage tank was analyzed using a nonlinear Peregrine model. The lapping wave's maximum run-up amplitudes and the hydrodynamic forces in the wall of the tank measured by linear and nonlinear Peregrine's models were compared numerically. As a result, it was concluded that the linear model may underestimate the effects on the vertical wall; therefore, it is more appropriate to use a nonlinear Peregrine model. Furthermore, this result can contribute to the stable structural designs of portable water storage tanks.

Investigation of the Effect of Water Depths on Two-dimensional Hydrodynamic Coefficients for Twin-hull Sections (쌍동체(雙胴體)에 작용(作用)하는 2차원 유체력계수(流體力係數)의 수심(水深)의 변화(變化)에 따른 영향(影響)에 관한 고찰(考察))

  • K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-45
    • /
    • 1982
  • A floating rig, which has been used to develop the ocean resources has a common characteristics with the catamaran ship that it is composed of the two simple hulls. So the motion responses of the floating rig can be predicted theoretically with the aid of the strip method as those of the catamaran. And for the strip method, the two-dimensional hydrodynamic coefficients are the most important inputs to predict the results accurately. In this report, a theoretical method is proposed for calculating two-dimensional hydrodynamic forces and moments acting upon arbitrary shaped twin-hull cylinders, which are forced to make a heaving, swaying and rolling oscillation about their mean position on the free surface of a finite depth water. The theoretical results by making use of the singularity distribution method are presented. The accuracy of the coefficients was confirmed to be reasonable by the comparison with the Ohkusu's results for two circular cylinders in an infinite depth water. The depth effects on two-dimensional hydrodynamic coefficients for two circular cylinders are also checked. In some range of wave numbers, large differences in the behavior of hydrodynamic coefficients between for a finite depth and for an infinite depth are shown.

  • PDF

Wave scattering among a large number of floating cylinders

  • Kashiwagi, Masashi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.53-66
    • /
    • 2005
  • When a large number of identical cylinders are placed in an array with equal separation distance, near-resonant phenomena may occur between cylinders at critical frequencies, and cause large wave forces on each element of the array. In this paper, 64 truncated circular cylinders arranged in 4 rows and 16 columns are considered to check occurrence of near-resonant phenomena and performance of theoretical predictions based on the potential flow. Experiments are conducted in head waves to measure the wave elevation along the longitudinal centerline of the model, and measured results are compared with numerical ones. Attention is focused on the spatial variation of the wave amplitude around the first near-trapped-mode frequency.

Lubrication Characteristic of a Disk Type Wave Thrust Bearing (Wave가 있는 원판형 추력베어링의 윤활특성)

  • 박태조;제태진;이운섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.888-891
    • /
    • 2002
  • This paper presents the lubrication characteristics of a disk type wavy thrust bearing. The hydrodynamic pressure distributions in the fluid film are numerically solved the Reynolds equation and then the bearing load capacity and friction forces acting on the disk are calculated. Especially the effects of number and amplitude of the circumferential waves are investigated for tilted operating conditions. The results showed that the load capacity increases with wave amplitude and optimum wave number exists for given design conditions. Therefore the results can be applied to enhance the lubrication performance of thrust bearing adopted in the scroll compressor.

  • PDF

An Experimental Investigation on the Hydrodynamic Characteristics of Submerged Artificial Seabed System in Regular Waves (중층계류식 인공해저시스템의 파랑중 운동특성에 관한 실험적 연구)

  • Yoon Sang-Joon;Yang Chan-Kyu;Kim Hyeon-Ju;Kim Heon-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.19-27
    • /
    • 2002
  • This paper deals with the experimental investigation on the hydrodynamic behavior of the submerged artificial seabed system in regular waves. This system can function as a basis of seaweed forest which will cultivate coastal fishing ground and enhance coastal productivity. The experiment was conducted with the submerged rectangular plates of different length and depth in 2-D wave flume of KRISO/KORDI. The wave exciting forces, mooring line tension and 2-D motion response are measured and analyzed to figure out the design strategy.

  • PDF

Interaction of a Floating Body with a Partially Reflective Sidewall in Oblique Waves (경사 입사파중 부분 반사 안벽과 부유체의 상호작용)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.410-418
    • /
    • 2009
  • Based on a linear potential theory, the boundary element method(BEM) is developed and applied to analyze the hydrodynamic forces and the motion responses of a floating body with a partially reflective sidewall. The hydrodynamic forces (added mass and damping coefficients) are dependent on not only the submergence of a floating body and the reflection of a sidewall, but also the gap between body and sidewall. In particular, the partial reflection of a sidewall plays an importance role in the motion responses of a floating body at resonant frequencies. It reduces the resonant peaks caused by resonance phenomenon due to the wave trapping in an enclosed fluid domain between body and sidewall. Developed predictive tools can be used to assess the motion performance of a floating body for various combinations of configuration of a floating body, wave heading, sidewall properties, and wave characteristics and applied to supply the basic informations for the harbour design considering the motion characteristics of a moored ship.

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Study on the Course Stability of a Barge in Waves (파랑중 부선의 침로안정성에 관한 연구)

  • Lee, Sangmin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.430-437
    • /
    • 2018
  • For a ship navigating in waves, added resistance, sway force and yaw moment due to waves differ from still water conditions, which affects the maneuverability of the ship. Therefore, it is important to estimate the sway force and yaw moment generated by waves. In this study, numerical simulations were carried out to calculate the hydrodynamic forces acting on a barge in still water and waves using CFD. Based on the results, the characteristics of course stability of a barge were investigated and analyzed. The hydrodynamic forces acting on the barge in waves were stronger than in still water, and it was confirmed that hydrodynamic forces become greater as wavelength becomes longer. In long wavelength regions, the (-) value of the yaw damping lever was larger than in still water. However, in short wavelength regions and when wavelength coincided with the length of the ship, values were smaller than in still water. In this region, it can be assumed that course stability improved. In other words, in long wavelength regions, the course stability of the barge was worse than in still water and short wavelength regions. Therefore, attention is required for safe navigation in long wavelength regions.

An Experimental Study on the Motion of the Floater Moored near Port in Waves Generated by a Ship

  • Nguyen, Thi Thanh Diep;Nguyen, Van Minh;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.5
    • /
    • pp.363-374
    • /
    • 2020
  • In the past, various research on the effects of waves generated by ships has been investigated. The most noticeable effect of the waves generated by a passing ship is the increase of the hydrodynamic forces and the unwanted large motion of the moored ship and high mooring forces that occur. Thus, it is crucial to investigate the effect of the waves generated by the passing ship near port on the motion of the moored ship and the tension of the mooring lines. A model test was performed with virtual ship-generated waves in a square tank at CWNU (Changwon National University). The IMU (Inertial Measurement Unit) and Optical-based system were used to measure the 6DOF (Six Degrees of Freedom) motion of the moored floater. Additionally the tension of mooring lines were measured by the tension gauges. The effects of the wave direction and wave height generated by the virtual ship-generated waves on the motion of the moored floater were analyzed.