• Title/Summary/Keyword: hydrodynamic performance

Search Result 492, Processing Time 0.031 seconds

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet (강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가)

  • Lee, Jin Young;Shin, Hyen Oh;Min, Kyeng Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

Study on the Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank based on ALE (ALE 기반 외부 보조연료탱크 충돌충격시험 수치해석 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • A fluid-structure interaction analysis should be performed to evaluate the behavior of the internal fuel and its influence in order to confirm the structural soundness of the fuel tank against external impacts. In the past, fluid-structure interaction analyses have been limited to the obtention of numerical simulation results due to the need for considerable computational resources and excessive computation time. However, recently, computer performance has been dramatically improved, enabling complex numerical analyses such as fluid-structure interaction analysis to be conducted. Lagrangian and Euler coupling methods and Lagrangian based analysis methods are mainly used for fluid-structure interaction analysis. Since both of these methods have their advantages and disadvantages, it is necessary to select the more appropriate one when conducting a numerical analysis. In this study, a numerical analysis of a crash impact test for a fuel tank is performed using ALE. The purpose of the numerical analysis is to estimate the possibility of failure of the fuel tank mounted inside the container when it is subjected to a crash impact. As a result of the numerical analysis, the fluid behavior inside the fuel tank is investigated and the stress generated in the fuel tank and the container structure is calculated, thereby enabling the possibility of fuel tank failure and leakage of the internal fluid to be evaluated.

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method (격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.742-750
    • /
    • 2020
  • The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

Improvement in the Dispersion Stability of Iron Oxide (Magnetite, Fe3O4) Particles with Polymer Dispersant Inject (고분자 분산제 주입을 통한 철산화물(Magnetite, Fe3O4) 입자의 분산 안정성 향상)

  • Song, Geun Dong;Kim, Mun Hwan;Lee, Yong Taek;Maeng, Wan Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.656-662
    • /
    • 2013
  • The iron oxide ($Fe_3O_4$) particles in the coolant of the secondary system of a nuclear power plant reduce the heat transfer performance or induce corrosion on the surface of the heat transfer tube. To prevent these problems, we conducted a study to improve the dispersion stability of iron oxide using polymeric dispersant injection in simulated secondary system water. The three kinds of anionic polymers containing carboxyl groups were selected. The dispersion characteristics of the iron oxide particles with the polymeric dispersants were evaluated by performing a settling test and measuring the transmission, the zeta potential, and the hydrodynamic particle size of the colloid solutions. Polymeric dispersants had a significant impact on the iron oxide dispersion stability in an aqueous solution. While the dispersant injection tended to improve the dispersion stability, the dispersion stability of iron oxide did not increase linearly with an increase in the dispersant concentration. This non-linearity is due to the agglomerations between the iron oxide particles above a critical dispersant concentration. The effect of the dispersant on the dispersion stability improvement was significant when the dispersant concentration ratio (ppm, dispersant/magnetite) was in the range of 0.1 to 0.01. This suggests that the optimization of dispersant concentration is required to maximize the iron oxide removal effect with the dispersant injection considering the applied environments, the iron oxide concentration and the concentration ratio of dispersant to iron oxide.

3D Modeling of Turbid Density Flow Induced into Daecheong Reservoir with ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청댐 유입탁수의 3차원 모델링)

  • Chung, Se-Woong;Lee, Heung-Soo;Ryoo, Jae-Il;Ryu, In-Gu;Oh, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1187-1198
    • /
    • 2008
  • Many reservoirs in Korea and their downstream environments are under increased pressure for water utilization and ecosystem management from longer discharge of turbid flood runoff compared to a natural river system. Turbidity($C_T$) is an indirect measurement of water 'cloudiness' and has been widely used as an important indicator of water quality and environmental "health". However, $C_T$ modeling studies have been rare due to lack of experimental data that are necessary for model validation. The objective of this study is to validate a coupled three-dimensional(3D) hydrodynamic and particle dynamics model (ELCOM-CAEDYM) for the simulation of turbid density flows in stratified Daecheong Reservoir using extensive field data. Three different groups of suspended solids (SS) classified by the particle size were used as model state variables, and their site-specific SS-$C_T$ relationships were used for the conversion between field measurements ($C_T$) and state variables (SS). The simulation results were validated by comparing vertical profiles of temperature and turbidity measured at monitoring stations of Haenam(R3) and Dam(R4) in 2004. The model showed good performance in reproducing the reservoir thermal structure and propagation of stream density flow, and the magnitude and distribution of turbidity in the reservoir were consistent with the field data. The 3D model and turbidity modeling framework suggested in this study can be used as a supportive tool for the best management of turbidity flow in other reservoirs that have similar turbidity problems.

Multidimensional Dynamic Water Quality Modeling of Organic Matter and Trophic State in the Han River System (한강수계에서의 다차원 시변화 유기물 및 영양상태 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.151-164
    • /
    • 2013
  • Multidimensional dynamic water quality model of organic matter and trophic state was applied to the Han River system. The model was calibrated using field measurement data obtained during the year of 2007. The model results showed reasonable performance in predicting temporal variations of TN, TP, Chl-a and BOD concentrations. The applied integrated modeling system can be effectively used to simulate water quality as well as hydrodynamic and water temperature for river-lake continuous system in the Han River. Utilizing the calibrated model, we analyzed the spatial and temporal distributions of TN, TP, Chl-a and BOD concentrations in the Han River system. The temporal variations of water quality at each river reach and lake were effectively simulated with the developed model and spatial distribution of water qualities in the Han River system could be compared. The multidimensional dynamic modeling system can simulate the water qualities of entire waterbody where Lake Paldang and the incoming flows are included using single modeling system. So it can be effectively used for integrated water quality management of the Han River system.

Development of Two Dimensional Blade Section with High Efficiency for Marine Propeller (선박 프로펠러용 고효율 2차원 날개단면 개발)

  • Na, Yun-Cheol;Song, In-Haeng;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.11-23
    • /
    • 1997
  • This paper contains a new approach to blade section design method for marine propellers. The hydrodynamic characteristics of 2-D section are highly influenced by its geometrical parameters i.e., thickness and camber distributions and leading edge radius etc. To consider fully turbulent flow field near 2-D section. the finite volume method with k-${\varepsilon}$ turbulent model which solve Reynolds time averaged Navier-Stokes(RANS) equation is applied. In this study, O-type grid system that can provide many calculation points on blade surface is used. The results were compared with those of the experiment of NACA0012 to confirm the accuracy of the developed codes. The goal of this study is the development of a blade section with high efficiency and low drag. To achieve this, we carried out the tests of lift, drag and cavitation characteristics in cavitation tunnel. The results of experiment were compared with numerical results in order to validate the proposed blades design method. By comparing the numerical results with the experiments, we found that the new blade section, KH28 allows superior performance in efficiency and cavitation avoidance characteristics. We further investigated the blade section design method and an application study of this section, KH28 to apply to the marine propeller. In order to improve the accuracy of numerical results on prediction of lift and drag, we conclude here that the 2-layer boundary model must be used.

  • PDF