• Title/Summary/Keyword: hydrodynamic effects

Search Result 507, Processing Time 0.03 seconds

Analysis and Test of Hydrodynamic Ram in Welded Metallic Water Tanks

  • Kim, Jong Heon;Kim, Chun-Gon;Jun, Seungmoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Analysis and test of hydrodynamic ram in welded metallic tanks containing water were performed to investigate the phenomena and to understand the effects on the resulting structural behavior. Arbitrary Lagrange-Euler coupling method was used for the analysis of the fluid-structure interaction occurring in the hydrodynamic ram, where the projectile, tank, and water are exchanging load, momentum, and energy during the traveling of the projectile through the water of the tank. For a better representation of the physical phenomena, modeling of the welded edges is added to the analysis to simulate the earlier weld line fracture and its influence on the resulting hydrodynamic ram behavior. Corresponding hydrodynamic tests were performed in a modified gas gun facility, and the following panel-based examinations of various parameters, such as displacement, velocity, stress, and energy, as well as hydrodynamic ram pressure show that the analysis and test are well correlated, and thus the results of the study reasonably explain the characteristics of the hydrodynamic ram. The methodology and procedures of the present study are applicable to the hydrodynamic ram assessment of airframe survivability design concepts.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART (SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰)

  • Lee, Gyu Mahn;Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.

Computation of Viscous Flows around a Ship with a Drift Angle and the Effects of Stern Hull Form on the Hydrodynamic Forces (사항중인 선체 주위의 점성유동 계산 및 조종유체력에 선미형상이 미치는 영향)

  • Sun-Young Kim;Yeon-Gyu Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • RANS solver has been developed to solve the flows past a ship with a drift angle. The solver employs a finite volume method for the spatial discretization and Euler implicit method for the time integration. Turbulent flows are simulated by Spalart-Allmaras one-equation model. Developed solver is applied to analyze the hydrodynamic forces and flows of two tankers with a same forebody but different afterbodies. The computed flows and hydrodynamic forces are compared with the measured flows and captive model test data. The computed results show good agreements with experimental data and show clearly the effects of stern hull form on the hydrodynamic forces and the flows.

  • PDF

Numerical Analysis for Hydrodynamic Interaction Effects between Vessel and Semi-Circle Bank Wall

  • Lee, Chun-Gi;Mun, Seong-Bae;O, Jin-Seok;Jeong, Yeon-Cheol;Jeong, Tae-Gwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.29-30
    • /
    • 2013
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as bank effects. In this research, the characteristic features of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between ship and semi-circle bank wall are summarized and discussed.

  • PDF

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines

  • Wang, Baowei;Rahmdel, Sajad;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.267-279
    • /
    • 2014
  • Hydrodynamic analyses of classic and truss spar platforms for floating offshore wind turbines (FOWTs) were performed in the frequency domain, by considering coupling effects of the structure and its mooring system. Based on the Morison equation and Diffraction theory, different wave loads over various frequency ranges and underlying hydrodynamic equations were calculated. Then, Response Amplitude Operators (RAOs) of 6 DOF motions were obtained through the coupled hydrodynamic frequency domain analysis of classic and truss spar-type FOWTs. Truss spar platform had better heave motion performance and less weight than classic spar, while the hydrostatic stability did not show much difference between the two spar platforms.

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja;R.S. Mishra
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.233-241
    • /
    • 2022
  • Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

Simulation of Submicron MOSFET Using Hydrodynamic Model (Hydrodynamic model을 이용한 Submicron MOSFET의 Simulation)

  • 김충원;한백형;김경석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.122-131
    • /
    • 1993
  • In this paper, we have developed a submicron Si MOSFET simulator, which is physically based on the hydrodynamic energy transport mode. The simulator was used to investigate the nonstationary transport effects and the transient phenomena in submicron Si MOSFET's. It is found that the velocity overshoot and the carrier heating are dominant transport mechanism near the drain end of the channel and the transient phenomena is more retained in a long channel MOSFET.

  • PDF