• Title/Summary/Keyword: hydrodynamic dispersion

Search Result 78, Processing Time 0.032 seconds

A Prediction System of SS Induced by Dredging (준설공사시 부유사 확산 예측시스템의 개발)

  • 정태성;김태식;강시환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • A SS prediction system using GUI in coastal region has been developed to predict the dispersion of the suspended sediments occurred by dredging. The prediction system uses a finite element hydrodynamic model to calculate water level and velocities and a random-walk particle tracking model to simulate SS dispersion. The system was applied to hindcast the tidal currents and SS concentrations in the Kunsan coastal waters. The simulated tidal currents showed good agreements with the observed currents. The transport model was verified for analytic solutions and field observation showing good agreements.

Numerical Simulation for Dispersion of Anthropogenic Pollutant in Northern Masan Bay using Particle Tracking Model (입자추적모델을 이용한 마산만 북부 해역에서의 육상오염물질 확산 수치모의)

  • KIM, Jin-Ho;JUNG, Woo-Sung;HONG, Sok-Jin;LEE, Won-Chan;CHUNG, Yong-Hyun;KIM, Dong-Myung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1143-1151
    • /
    • 2016
  • To study the dispersion process and residence time of anthropogenic pollutant in Masan bay, a three-dimensional hydrodynamic model coupled to a particle tracking model, EFDC, is applied. Particle tracking model simulated the instantaneous release of particles emulating discharge from river and wastewater treatment plant to show the behaviour of pollutant in terms of water circulation and water exchange. Modelled outcomes for water circulation were in good agreement with tidal elevation and current data. The results of particle tracking model show that over half of particles released from northern Masan bay transport to out of area while the particles from Dukdong wastewater treatment plant transport to northern area. This meant pollution source from inside and outside of the northern area can affect water quality of northern Masan bay.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

Hydrodynamic Dispersion Characteristics of Multi-soil Layer from a Field Tracer Test and Laboratory Column Experiments (현장추적자시험과 실내주상실험을 이용한 복합토양층의 수리분산특성 연구)

  • Kang, Dong-Hwan;Yang, Sung-Il;Kim, Tae-Yeong;Kim, Sung-Soo;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • This study analyzed for hydrodynamic dispersion characteristics of multi-soil layer (Silt and clay, Find sand, Coarse sand), data of a field tracer test on the multi-soil layer and data of laboratory column experiments on the samples on each soil layers. Through the analysis of permeability and flow, MS (Silt and clay) and FS (Fine sand), which were low effective porosity, were higher average linear velocity while CS (Coarse sand), which was high effective porosity, was higher hydraulic conductivity. Hydraulic conductivity function based on average soil particle diameter was assumed Y=$3.49{\times}10^{-8}e^{15320x}$ and coefficient of determination was 0.90. Average linear velocity function based on average soil particle diameter was assumed Y=$1.88{\times}10^{-7}e^{11459x}$ and coefficient of determination was 0.81. Longitudinal dispersivity function based on average soil particle diameter was Y = 0.00256$e^{5971x}$ and coefficient of determination was 0.98. According to the linear regression analysis of average linear velocity and longitudinal dispersivity, assumed function was Y = 21.7527x + 0.0063, and coefficient of determination was 0.9979. The ratio of field scale/laboratory scale was 54.09, it exhibited scale-dependent effect of hydrodynamic dispersion. Field longitudinal dispersivity (1.39m) was 7.47 times as higher than longitudinal dispersivity estimated by the methods of Xu and Eckstein (1995). Hydrodynamic dispersion on CS layer was occurred mainly by diffusion flow in the test aquifer.

Mobility of Metals in Tailings using a Column Experiment from the Guryong Copper Mine (주상모사실험을 이용한 구룡광산 광미 내 원소의 이동성)

  • Moon, Yong-Hee;Song, Yun-Goo;Moon, Hi-Soo;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The laboratory column experiments were used to transport of metal elements by infiltration-related dispersion and/or diffusion in mine tailing of the Guryong gold mine. The mine tailing shows the neutral pH (for a pore water) and contains quartz, chlorite, pyrite and calcite. Both a non-reactive solute ($Cl^-$ of 100 mg $L^{-1}$) and a reactive solute (1N HCl), were injected continuously through columns. The breakthrough curve in the non-reactive experiment reached at a maximum under 1.5 pore volumes (PV). The longitudinal dispersion (0.607 cm) and hydrodynamic dispersion coefficient ($1.96{\times}10^{-7}cm^{2}sec^{-1}$) were calculated by the slope. In the reactive experiment, the plateau curve was appeared in the pH values of 5.3, 4.5 and 1.7. The releases of metal elements such as Fe, Mn, Al, Cu, Zn, Pb, and Cd were observed to be related to the pH buffering. High concentrations of Mn, Cd and Zn were observed at the first pH plateau (4 PV and pH 5.3), whereas Fe, Cu, Al and Pb were released as the pH decreased to 4.0 or less. The resulting order of metals mobility, based on the effluent water, is Mn=Cd>Zn>Cu>Fe>Al>Pb.

Improvement in the Dispersion Stability of Iron Oxide (Magnetite, Fe3O4) Particles with Polymer Dispersant Inject (고분자 분산제 주입을 통한 철산화물(Magnetite, Fe3O4) 입자의 분산 안정성 향상)

  • Song, Geun Dong;Kim, Mun Hwan;Lee, Yong Taek;Maeng, Wan Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.656-662
    • /
    • 2013
  • The iron oxide ($Fe_3O_4$) particles in the coolant of the secondary system of a nuclear power plant reduce the heat transfer performance or induce corrosion on the surface of the heat transfer tube. To prevent these problems, we conducted a study to improve the dispersion stability of iron oxide using polymeric dispersant injection in simulated secondary system water. The three kinds of anionic polymers containing carboxyl groups were selected. The dispersion characteristics of the iron oxide particles with the polymeric dispersants were evaluated by performing a settling test and measuring the transmission, the zeta potential, and the hydrodynamic particle size of the colloid solutions. Polymeric dispersants had a significant impact on the iron oxide dispersion stability in an aqueous solution. While the dispersant injection tended to improve the dispersion stability, the dispersion stability of iron oxide did not increase linearly with an increase in the dispersant concentration. This non-linearity is due to the agglomerations between the iron oxide particles above a critical dispersant concentration. The effect of the dispersant on the dispersion stability improvement was significant when the dispersant concentration ratio (ppm, dispersant/magnetite) was in the range of 0.1 to 0.01. This suggests that the optimization of dispersant concentration is required to maximize the iron oxide removal effect with the dispersant injection considering the applied environments, the iron oxide concentration and the concentration ratio of dispersant to iron oxide.

Experimental validation of the seismic analysis methodology for free-standing spent fuel racks

  • Merino, Alberto Gonzalez;Pena, Luis Costas de la;Gonzalez, Arturo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.884-893
    • /
    • 2019
  • Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology.

Evaluation of Contaminant Retardation Capacities of Bank Aquifer Materials (강변 대수층 매질 시료의 오염물질 지연능 평가)

  • Kim, Jae Young;Oh, Dong Ik;Park, Dong Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.62-71
    • /
    • 1999
  • The containment retardation capacities of four different aquifers were evaluated in a preliminary study for development of bank filtration in the Young San river area. $NO_3-N$, $NO_2-N$, $NH_4^+-N$, Fe, Mn, phenol, and chloride were selected as the target contaminants and a nonreactive tracer, respectively. Batch isotherm tests were conducted to measure the partition coefficients of the target contaminants. The mass transport parameters of nonreactive tracer were estimated from column tests. From the results of bath isotherm tests, it was shown that lower stream aquifer materials have greater partition coefficients of $NO_3-N$, $NH_4^+-N$, Mn, and phenol than the upper stream aquifer materials; however, there was no significant position-dependent trend for Fe. All aquifer materials tested have the same range of partition coefficients for $NO_2-N$. Column tests showed that the molecular diffusion of Cl- was much less than the mechanical dispersion; and there was no significant difference between the estimated dispersivities of tested aquifer materials. Consequently, it seems that the difference in the containment retardation capacities between four aquifers tested in this study would primarily result not from hydrodynamic dispersion but from partitioning.

  • PDF

Modeling Dynamics of Nonconservative Pollutants in Streams with Pools and Riffles

  • Seo, Il-Won;Yu, Dae-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1993.07a
    • /
    • pp.175-182
    • /
    • 1993
  • The complex nature of low flow transport and tranformation of nonconservative pollutants in natural streams with pools and riffles has been investigated using a numerical solution of a proposed mathematical model that is based on a set of mass balance equations describing hydrodynamic processes (advection, dispersion, and mass exchange mechanicms in streams and in storage zones) and chemical processes (reaction or decay). In this study, a mathematical model (named "Storage-Transformation Model") has been developed to predict adequately the non-Fickian nature of mixing and transformation mechanisms for decaying substances in natural streams under low flow conditions. Comparisons between the concentration-time curves predicted usingthe proposed model and the measured stream data shows that the Storage-Transformation Model yields better agreements in the goneral shape, peak concentration and time to peak than the 1-D dispersion model. The result of this study also demonstrates the differences between transport in pool-and-riffle streams versus transport in more uniform channels. The proposed model shows significant improvement over the conventional 1-D disperision model in predicting natural mixing and stroage processes in streams through pools and riffles.

  • PDF

Analysis of Pollutant Transport in Subsurface Materials by Using Radioisotope (동위원소를 이용한 지하매질내 오염물 이동 해석)

  • Kim, Ki Chul;Park, Geon Hyeong;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • The pollutants in subsurface soil are advected by groundwater flow and transported by the hydrodynamic dispersion. In this study, laboratory-scale experiments by using a radioisotope were conducted to evaluate the characteristics of the transport and dispersion of pollutants in the soil. The hydraulic model of the laboratory-scale was manufactured based upon its geometric similarity. Tc-99m having a short half-life was used with a tracer and it was injected instantaneously into the soil. Tc-99m milked from a $^{99}Mo/^{99m}Tc$ portable generator fabricated for medical purposes had 0.141 MeV of gamma radiation. The experiments are performed by the different conditions like the variations of groundwater velocity and the results are analyzed by the measured CPS of Tc-99m.