• Title/Summary/Keyword: hydrocarbon refrigerant

Search Result 47, Processing Time 0.024 seconds

Characteristics on Evaporating Pressure Drop of HCs Refrigerants inside a horizontal tube (수평관내 HC계 냉매의 증발 압력강하 특성)

  • Choi, Jun-Hyuk;Lee, Ho-Saeng;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.63-64
    • /
    • 2006
  • Chracteristics on evaporating pressure drop of HCs refrigerants inside a horizontal tube were studied experimentally. Experimental results were presented for pressure drops of hydrocarbon refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 inside a horizontal double pipe heat exchanger. Three tubes with a tube diameter of 12.70mm, 9.52mm and 6.35mm were used for this study. Hydrocarbon refrigerants showed higher evaporating pressure drop than that of R-22 in all tubes. The highest pressure drop was founded in R-600a. The highest evaporating perssure drop of all refrigerants was shown in a tube diameter of 6.35mm with same mass flux. The results can be used as the basic data for the design of heat exchanger using hydrocarbon refrigerants as an alternatives.

  • PDF

Experimental Study on Heat Transfer Characteristics of Evaporation using Propylene Refrigerant (프로필렌 냉매의 증발열전달 특성에 관한 실험적 연구)

  • 이호생;김재돌;정석권;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.754-761
    • /
    • 2004
  • In this paper, evaporating heat transfer characteristics in the refrigeration and air-conditioning facilities were studied using the environmentally friendly refrigerants R-1270 (Propylene). R-290 (Propane). R-600a (Iso-butane) and HCFC refrigerant R-22 The test tube was surrounded by an annulus with water flowing counter to the refrigerant. The tube is copper. with an outside diameter of 12.7mm and the wall thickness of 1.315mm. The test results showed that the local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22 Comparing the heat transfer coefficient of experimental results with that of other correlations. the presented results had agood agreement with the Kandlikar's correlation. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

Condensing Heat Transfer of Natural Refrigerants with Nanoparticles in Enhanced Tube (나노입자를 포함한 자연냉매의 마이크로 휜관 응축 열전달 특성)

  • Lee, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • This paper deals with the heat transfer and pressure drop characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for condensing. The test section is a horizontal double pipe heat exchanger. Condensing heat transfer and pressure drop measurements were Peformed for 12.70 mm micro-fin tube and compared with the results in smooth tube. The local condensing heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-600a. The average condensing heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Hydrocarbon refrigerants have a higher pressure drop than that of R-22 with respect to refrigerant qualify and mass flux. Also, the condensing heat transfer coefficient and pressure drop of working fluids in smooth and micro-fin tube were compared. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 2.2 to 2.6 in all experimental conditions.

  • PDF

Performance Evaluation of R-22 Alternative Refrigerants with Hydrofluorocarbon and Hydrocarbon (HFC 및 탄화수소를 포함한 R-22 대체냉매의 성능평가)

  • 김창년;박영무;이병권;임종성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.315-324
    • /
    • 2000
  • R-410A, R-407C, and four refrigerant mixtures composed of R-32, R-l34a, R-l43a, R-l52a, R-600(butane), and R-600a(isobutane) were tested in an attempt to replace R-22 used in most of the residential air conditioners. The performance evaluation was carried out in a psychrometric calorimeter test facility using a residential spilt type air conditioner under the KS rating conditions. Except for the lubricant and hand-operated expansion valve, the other parts of the air conditioner were the same with the commercial system. Performance characteristics were measured; COP, capacity, compressor power, and VCR. R-410A was shown to have 5.5% higher COP and 3.5% lower capacity than R-22. R-32/134a/600a (42.8/ 46.0/11.2 wt%) mixture have the best performance among the four refrigerant mixtures composed of hydrofluorocarbon and hydrocarbon. This inixture have 3.0% lower COP and 1.6% lower capacity than R-22.

  • PDF

Study on Performance Characteristic of Water-Cooled Type Beat Pump Using Hydrocarbon Refrigerants (탄화수소계 냉매를 이용한 수냉식 히트점프의 성능특성에 관한 연구)

  • Jun Chul-Ho;Lee Ho-Saeng;Kim Jae-Dol;Yoon Jung-ln
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.870-876
    • /
    • 2005
  • This study of the performance characteristics of natural refrigerants such as R-290 (propane), R-6OOa (iso-butane) and R-1270 (propylene) has investigated to compare with conventional HCFC's refrigerant R-22 for water-cooled heat pump system. The experimental apparatus has basic parts of cycle that uses the water as a heat source. The Performance of the water-cooled system using hydrocarbon refrigerants had been getting better than R-22 from start-up to the similar evaporating temperature after stabilizing system. Through the above it is possible that hydrocarbon refrigerants could be drop-in alternatives for R-22.

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Performance Characteristics of Refrigeration and Air Conditioning System Using Hydrocarbon Refrigerants (탄화수소계 냉동공조 시스템의 성능특성에 관한 실험)

  • 이호생;이근태;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.728-734
    • /
    • 2004
  • Environmentally friendly refrigerants with zero ozone layer depletion potential are required to be used in refrigerators and air conditioners due to the difficulties related to ozone layer depletion and global warming. A rigorous study for the system performance with new refrigerants having zero ozone layer depletion potential is inevitable before adopting that as a new fluid. The HFC(Hydrofluorocarbon) potential has been recommended as alternatives. In this paper. system performance in the heat pump facilities were studied using R-290, R-600a. R-1270 as an environment friendly refrigerant. R-22 as a HCFC's refrigerant. The experimental apparatus has been set-up as a conventional vapor compression type heat Pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70mm with 1.315mm wall thickness is used for this investigation. The test results showed that the COP of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of COP was found in R-1270. The refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. The compressor work was obtained with the maximum value in R-1270 and the minimum one in R-22.

Performance and heat transfer of an air conditioning system filled with hydrocarbon refrigerants (탄화수소 냉매를 사용한 냉방시스템의 성능 및 열전달 특성)

  • Jang, Yeong-Su;Kim, Min-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.713-723
    • /
    • 1997
  • Performance and heat transfer characteristics of an air conditioning system filled with hydro- carbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as working fluids in the air conditioning system. Performances of each refrigerant are obtained at several compressor speeds and temperature levels of secondary heat transfer fluids. The cooling capacity and the coefficient of performance are obtained as test results. Heat transfer data of selected refrigerants are achieved from overall conductance measurement. Average heat transfer coefficients at different mass fluxes are shown and they are also displayed for different heat capacities of the system. Experimental results show that some hydrocarbon refrigerants have better characteristics than R22.

Condensing heat transfer characteristics of hydrocarbon refrigerants in a horizontal tube (탄화수소 냉매의 수평 원관내 응축열전달 특성)

  • Jang, Yeong-Su;Kim, Min-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1656-1667
    • /
    • 1997
  • Condensing heat transfer characteristics of hydrocarbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as test fluids. Local condensing heat transfer coefficients of selected refrigerants are obtained from overall conductance measurement. Average heat transfer coefficients at different mass fluxes and heat transfer rates are shown and compared with those of R22. Pure hydrocarbon refrigerants have higher values of heat transfer coefficient than R22. It is also found that there is a heat transfer degradation for hydrocarbon mixtures due to composition variation during condensation. Measured condensing heat transfer coefficients are compared with predicted values by available correlations. An empirical correlation for pure and mixed hydrocarbon is developed, and it shows good agreement with experimental data.

Performance Analysis of Refrigeration Cycle of Hydrocarbon Refrigerant using Suction-Line Heat Exchanger (흡입관 열교환기를 이용한 탄화수소계 냉매용 냉동사이클의 성능 분석)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2195-2201
    • /
    • 2009
  • This paper considers the influence of suction-line heat exchangers on the efficiency of a refrigeration cycle using hydrocarbon refrigerants such as R290, R600a and R1270. These suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analyze the performance characteristics of refrigeration cycle with suction-line heat exchanger. The influence of operating conditions, such as the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, to the performance of the cycle is also analyzed in the paper. Results showed that the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle of hydrocarbon refrigerants using suction-line heat exchanger.