• Title/Summary/Keyword: hydroball

Search Result 13, Processing Time 0.022 seconds

Effects of Soil Amendments and Planting Miscanthus sinensis on Salt Reduction and Growth Improvement in Substrate irrigated with High Concentration of Calcium Chloride Deicing Salts (염화칼슘 제설제 고농도 처리에 따른 토양개량제와 참억새 식재 처리가 염류저감 및 생육개선에 미치는 영향)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.15-25
    • /
    • 2019
  • Contamination of soil by deicing salt is among the important environment problems due to their toxicity and negative impact to human health and the environment. One of the effective methods for cleaning the soil from deicing salts is desalination using soil amendment-phytoremediation continuum treatment. The purpose of this study was to determine how much of the pH, EC control and Ca2+, Na+, Mg2+, and K+ taken up soil amendments and Miscanthus sinensis, and to evaluate the effect of salt reduction and growth improvement as affected by soil amendment in high concentration of calcium chloride (CaCl2) deicing salts. Results indicated that the addition of soil amendments was decrease the EC and pH, also significantly reduce the leaching of Ca2+, Na+, Mg2+, K+, a chloride ions related deicing salts, compared to the control for CaCl2 10 g/L treatment. It also resulted in an enhanced plant growth and higher plant height, leaf length, leaf width, number of leaves, fresh weight and dry weight in Hydroball treatment + Miscanthus sinensis planting continuum treatment compared to the treatment that planted Miscanthus sinensis only. Therefore, we concluded that soil amendments might be attributed to an accumulation of deicing slats in the roadside soil, resulting in the improvement of Miscanthus sinensis growth.

Control of Several Fungi in the Recirculating Hydroponic System by Modified Slow Sand Filtration (재순환 양액재배시 저속 모래여과기 시스템을 이용한 진균류 제어)

  • Park, K.W.;Lee, G.P.;Kim, M.S.;Lee, S.J.;Seo, M.W.
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.347-349
    • /
    • 1998
  • Slow sand filtration was modified and applied for the determination of eliminating efficacy of various fungi and for recommending an easy approach to growers. After 1,500 liter filtration, Fusarium oxysporum was eliminated by several substrates such as activated charcoal (92.5% elimination), silica (90.8%), vermiculite (90.5%), sand (82.3%), perlite (50.4%), and hydroball (21.2%). Silica was able to eliminate several fungi by maximal ratio, which was corresponded to Fusarium oxysporum 120 cfu/mL. Collectotrichum lagenarium 98 cfu/mL. Phytophthora capsici 82 cfu/mL, Botrytis cinerea 62 cfu/mL, Pythium spp. 42 cfu/mL, and Sclerotinia ssp. 52 cfu/mL. In this case, the change of EC was minor and pH was maintained to about 7. In deep flow culture of 'Ddooksum Cheokchookmyeon' lettuce and 'Seokwang' tomato, silica-, activated charcoal-, and vermiculite-based filtration system successfully eliminated Fusarium oxysporum and Phytophthora capsici from the nutrient solution. As a result, these plants were not diseased by ten weeks after inoculation. With this system, growers can easily control the root-zone fungi in the recirculating hydroponic system.

  • PDF

Effect of Bacterial Population from Rhizosphere of Various Foliage Plants on Removal of Indoor Volatile Organic Compounds (다양한 관엽식물의 근권부 박테리아 집단이 실내 휘발성 유기화합물질의 제거에 미치는 영향)

  • Chun, Se-Chul;Yoo, Mung-Hwa;Moon, Young-Sook;Shin, Mi-Ho;Son, Ki-Cheol;Chung, Ill-Min;Kays, Stanley J.
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.476-483
    • /
    • 2010
  • Total bacterial populations were cultured from the Hydroball cultivation media in the rhizospheres of 9 different plants including $Hedera$ $helix$ L. and $Dracaena$ $deremensis$ cv. Warneckii Compacta, etc. These cultured bacterial populations were studied to test if the bacterial populations in the plant growing pots may play a role on removal of volatile organic compounds (VOCs) such as benzene and toluene in the air. To meet this objective, first, we tested the possibility of removal of VOCs by the cultured total bacteria alone. The residual rates of benzene by the inoculation of total bacterial populations from the different plant growth media were significantly different, ranging from 0.741-1.000 of $Spathiphyllum$ $wallisii$ 'Regal', $Pachira$ $aquatica$, $Ficus$ $elastica$, $Dieffenbachia$ sp. 'Marrianne' Hort., $Chamaedorea$ $elegans$, compared to the control with residual rate of 0.596 (LSD, $P$=0.05). This trend was also similar with toluene, depending on different plants. Based on these results, we inoculated the bacterial population cultured from $P.$ $aquatica$ into the plant-growing pots of $P.$ $aquatica$, $F.$ $elastica$, and $S.$ $podophyllum$ inside the chamber followed by the VOCs injection. The inoculated bacteria had significant effect on the removal of benzene and toluene, compared to the removal efficacy by the plants without inoculation, indicating that microbes in the rhizosphere could play a significant role on the removal of VOCs along with plants.