• Title/Summary/Keyword: hydride generation atomic absorption spectrometry (HG-AAS)

Search Result 7, Processing Time 0.02 seconds

Analysis of selenium in oil refinery wastewater by hydride generation atomic absorption spectrometry (Hydride Generation Atomic Absorption Spectrometry를 이용한 석유정제폐수중의 selenium 분석)

  • Cheon, Mi-Hee;Kim, Chul;Lee, Hyun-Joo;Kang, Lim-Seok
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.399-406
    • /
    • 2003
  • This study was conducted to find out the analysis condition of selenium(Se) in oil refinery wastewater with a high concentration of Se using the atomic absorption spectrometry with hydride generation system (HG-AAS). From various experiments that reduced Se(VI) to Se(IV), the optimum pretreatment condition was determined to be a sample volume of 10 mL, HCl 10 mL, with a 30 min heating time in a water bath. In oil refinery wastewater, as the concentration of organics and constitution became higher, the recovery rates of Se decreased. Therefore, three acid digestion methods ($HNO_3/HClO_4$ digestion, $KMnO_4$ digestion, and microwave acid digestion) were tested on the recovery rates of Se in reference to the digestion of organics, petroleum and oxidation from organic Se(org.), Se(IV) to Se(VI). The experiment results showed that the average recovery rate of Se was the highest in microwave acid digestion, although all of the digestions were more than 90%. In consequence, the pretreatment procedure of microwave digestion followed by HCl addition was the most suitable for selenium analysis in oil refinery wastewater by using HG-AAS.

Determination of Selenium and Tellurium by HG-AAS in Foods

  • Cha, Ki-Won;Park, Sang-Ho;Park, Kwang-Won
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.419-425
    • /
    • 1995
  • A method has been investigated for the determination of selenium and tellurium in Ginseng, Ganoderma and Garlic using hydride generation atomic absorption spectrometry(HG-AAS). The concentration effects of hydrochloric acid and sodium tetrahydroborate on the hydride generation for the determination of selenium and tellurium were investigated. The method of sample decomposition was also investigated using various mineral acids, such as nitric, perchloric and sulfuric acid in the closed system, and foreign ion effects containing in the samples were studied. The calibration curves of selenium and tellurium were obtained in the range of 0~40 ppb. The detection limits(S/N=2) of selenium and tellurium are 0.1 and 0.2 ppb. Analytical data of selenium and tellurium in Garlic, Ganoderma and Ginseng are 289, 296 and 198 ng/g for selenium and 146, 127 and 110 ng/g for tellurium, respectively.

  • PDF

A Study on the Optimal Analytical Method for the Determination of Urinary Arsenic by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS법에 의한 요중 비소의 최적 분석법에 관한 연구)

  • Lee, Jong-Wha;Lee, Ui-Seon;Hong, Sung-Chul;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.402-410
    • /
    • 2009
  • This study was carried out to examine the optimal analytical method for determination of urinary toxic arsenic (inorganic arsenic and its metabolites) by HG-AAS (hydride generation-atomic absorption spectrometry). In the analysis of SRMs (standard reference materials), method E (addition of 0.4% L-cysteine to pre-reductant and use 0.04M HCl as carrier acid) showed the most accurate results compared with the reference values. In the analysis of 30 urinary samples, analytical results were significantly different depend on the component of pre-reductant and the concentration of carrier acid. When the concentration of carrier acid was higher, the analytical result was lower. The recovery rates of MMA (monomethylarsonic acid) and DMA (dimethylarsenic acid) were varied by the concentration of pre-treatment acid and carrier acid and hydride generation reagents. When the concentration of carrier acid was 1.62 M (5% HCl), the recovery rates of DMA was 1%. The recovery rates of MMA and DMA in method E (=V) were 102% and 100%, respectively. The results of this study suggest that the component and concentration of pre-reductant and carrier acid must be carefully adjusted in the analysis of urinary arsenic, and method E is recommendable as the most precise analytical method for determination of urinary toxic arsenic.

Comparisons of Urinary Arsenic Analysis by Pre-reductant for Preconditioning via the FI-HG-AAS Method (FI-HG-AAS를 이용한 전처리 과정에서 사용되는 예비환원제의 종류에 따른 요중 비소 분석결과 비교)

  • Choi, Seung-Hyun;Choi, Jae Wook;Cho, YongMin;Bae, Munjoo
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.289-298
    • /
    • 2015
  • Objectives: The method of analyzing urinary arsenic by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) is generally used because it shows relatively greater sensitivity, low detection limits, low blocking action, and is simple to operate. In this study, the results of analysis according to three pre-reductants commonly used in the FI-HG-AAS method were compared with each other. Methods: To analyze urinary arsenic, nineteen urine samples were collected from adults aged 43-79 years old without occupational arsenic exposure. Analysis equipment was FI-HG-AAS (AAnalyst 800/FIAS 400, Perkin- Elmer Inc., USA). The three pre-reductants were potassium iodide (KI/AA), C3H7NO2S (L-cysteine), and a mixture of KI/AA and L-cysteine (KI/AA&L-cysteine). Results: In the results of the analysis, the recovery rate of the method using KI/AA was 82.3%, 95.7% for Lcysteine, and 123.5% for KI/AA and L-cysteine combined. When compared with the results by use of high performance liquid chromatography inductively-coupled plasma mass spectrometry (HPLC-ICP-MS), the method using L-cysteine was the closest to those using HPLC-ICP-MS ($98.57{\mu}g/L$ for HPLC-ICP-MS; $74.96{\mu}g/L$ for L-cysteine; $69.23{\mu}g/L$ for KI/AA and L-cysteine; $13.06{\mu}g/L$ for KI/AA) and were significantly correlated (R2=0.882). In addition, they showed the lowest coefficient of variation in the results between two laboratories that applied the same method. Conclusion: The efficiency of hydride generation is considered highly important to the analysis of urinary arsenic via FI-HG-AAS. This study suggests that using L-cysteine as a pre-reductant may be suitable and the most rational among the FI-Hg-AAS methods using pre-reductants.

Effects of Acid and Pre-Reductant in the Analysis of Arsenic by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS법에 의한 비소 분석에서 산 및 Pre-Reductant가 분석에 미치는 영향)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.151-157
    • /
    • 2000
  • Effects of acids and pre-reductants in the analysis of arsenic have been studied by hydride generation-atomic absorption spectrometry. The analytical results were strongly dependent on the acid concentrations. All the pre-reductants was very effective to observe the arsenic signal at strong acid concentrations (3 M-5 M). However, at the low acid condition (${\leq}0.1M$), L-cysteine only showed a reasonable effect on the absorption signal. When the sample was treated with the nitric acid, absorption signal was unstable and was also decreased. Although interference effects were observed from metal ions such as $Cr^{6+}$ and $Br^{5+}$ at low acid condition, the generation of hydride could be increased by the strong acid condition.

  • PDF

Determination of Selenium in Foods by HG-AAS (HG-AAS에 의한 식품 중의 셀렌의 정량에 대한 연구)

  • Ki-Won Cha;Sang-Ho Park;Jae-Sung Choi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.891-897
    • /
    • 1994
  • A method has been investigated for the determination of Selenium in Ginseng radix, Ganoderma Lucidum and Garlic using hydride generation atomic absorption spectrometry (HG-AAS). The effects of several acids and sodium tetrahydroborate concentration and their flow rate on the determination of Selenium for the hydride generation were investigated. The method of sample decomposition was also investigated using various mineral acids, such as nitric, perchloric and sulfuric acid in the closed system and foreign ion effects were studied. In the optimum conditions, we obtained calibration curve in the range 0-40 ppb. The analytical data of Garlic, Ganoderma Lucidum and Ginseng radix are 289, 296, 198 ppb, respectively.

  • PDF

Effects and optimum conditions of pre-reductant in the analysis of inorganic arsenic by hydride generation-atomic absorption spectrometry (HG-AAS에 의한 무기비소 분석 시 예비환원제의 최적화 조건과 분석에 미치는 영향)

  • Song, Myung Jin;Park, Kyung Su;Kim, Young Man;Lee, Won
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.396-402
    • /
    • 2005
  • We try to look for optimum conditions of pre-reductants like L-Cysteine, KI and $FeSO_4$ when analyzing inorganic arsenic by using hydride generation-atomic absorption spectrometry, and run a comparative study of effect in the analysis of them. Also, we separated and analyzed only inorganic arsenic by using $H_2SO_4$-trap to eliminate organic arsenic which are MMA(monomethylarsonate) and DMA(dimethylarsinate). Under the conditions of mixture acid of 1.8 M HCl and 0.08 M $HNO_3$, arsenic standard solution of 20 ppb have more higher absorbance than without adding acid. In case of L-Cysteine, As(V) completely reduces into As(III) when 0.5 g of L-Cysteine is reacted more than 30 mins. in weak acid condition of approximately 0.07 M $HNO_3$ or HCl. In the event of KI, As(V) completely reduces into As(III) when 3 g of KI is reacted more than 1hour in acid condition of 0.8 M $HNO_3$. On the occasion of $FeSO_4$, the inside of tube is blocked by precipitation by mixture reaction of $NaBH_4$ and $Fe^{2+}$, therefore, comparing to other pre-reductants, reproducibility of efficiency of reducing As(V) to As(III) is low. To evaluate the accuracy of the analytical results, we use NIST SRM 1643C Trace Elements in Water ($82.1{\pm}1.2ng/mL$). The results are satisfactory.