• Title/Summary/Keyword: hydraulic system

Search Result 3,073, Processing Time 0.022 seconds

Chemical and Physical Influence Factors on Performance of Bentonite Grouts for Backfilling Ground Heat Exchanger (지중 열교환기용 멘토나이트 뒤채움재의 화학적, 물리적 영향 요소에 관한 연구)

  • Lee, Chul-Ho;Wi, Ji-Hae;Park, Moon-Seo;Choi, Hang-Seok;Shon, Byong-Hu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.19-30
    • /
    • 2010
  • Bentonite-based grout has been widely used to seal a borehole constructed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. Three types of bentonites were compared one another in terms of viscosity and thermal conductivity in this paper. The viscosity and thermal conductivity of the grouts with bentonite contents of 5%, 10%, 15%, 20% and 25% by weight were examined to take into account a variable water content of bentonite grout depending on field conditions. To evaluate the effect of salinity (i.e., concentration of NaCl : 0.1M, 0.25M, and 0.5M) on swelling potential of the bentonite-based grouts, a series of volume reduction tests were performed. In addition, if the viscosity of bentonite-water mixture is relatively low, particle segregation can occur. To examine the segregation phenomenon, the degree of segregation has been evaluated for the bentonite grouts especially in case of relatively low viscosity. From the experimental results, it is found that (1) the viscosity of the bentonite mixture increased with time and/or with increasing the mixing ratio. However, the thermal conductivity of the bentonite mixture did not increase with time but increased with increasing the mixing ratio; (2) If bentonite grout has a relatively high swelling index, the volume reduction ratio in the saline condition will be low; (3) The additive, such as a silica sand, can settle down on the bottom of the borehole if the bentonite has a very low viscosity. Consequently, the thermal conductivity of the upper portion of the ground heat exchanger will be much smaller than that of the lower portion.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.