• Title/Summary/Keyword: hydraulic response test

Search Result 86, Processing Time 0.026 seconds

Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System (능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도)

  • 김동윤;홍예선;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

A Study of the Life Test of Hydraulic Pump Driving Gear Box for the Large Excavator (초대형 굴삭기용 유압펌프 구동 기어박스의 수명시험에 관한 연구)

  • Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2015
  • Large hydraulic excavator weighted 90 tons used the several pumps installed in parallel to use the hydraulic pump driving gearbox to improve fuel consumption by improving the energy efficiency of the hydraulic system. Gearbox connected to hydraulic pump supply the mechanical output to the high pressure and low pressure pump to be supplied by torque and rotation, which are the mechanical power, through a input shaft connected to large size engine of the excavator. So, gearbox connected to hydraulic pump is same as main artery in the human body and is required long life because it operates the hydraulic pump continuously during operating the engine. This study had used oil contamination analysis method to check the wear characteristics of the gearbox and frequency response characteristic analysis method to check the failure of the teeth failures of gearbox, while the test equipment adopted by the electrical feedback method to reduce the energy consumption was operating for the life assessment, in which the required power was 600 kW input power.

A Durability Evaluation of Remanufactured Industrial Hydraulic Pump and Solenoid Valve (산업용 유압펌프 및 솔레노이드 밸브 재제조품의 내구성 평가)

  • Lee, Kyu-Chang;Park, Sang-Jin;Son, Woo-Hyun;Jeon, Chang-Su;Mok, Hak-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.537-546
    • /
    • 2021
  • Remanufacturing is one of the most important resource recycling technology in response to resource depletion and environmental pollution. Domestic remanufacturing industry don't invigorate compared to other advanced countries because of low price and reliability of remanufactured product. In this study, remanufactured hydraulic pump and solenoid valve were evaluated durability by accelerated life test. In order that standard remanufacturing process was developed by core analysis and failure mode and effect analysis. And cores were remanufactured by standard remanufacturing process. For accelerated life test, the evaluation item and criteria were deduced by results of FMEA, reliability standards and enterprise interior criteria. To evaluate durability of remanufactured product, the remanufactured hydraulic pump and solenoid valve were evaluated performance after accelerated life test and the results were satisfied with criteria. This study showed that remanufactured products have a similar level of durability to new products by definition of remanufacturing.

Active Control of Structural Vibration Using An Instantaneous Control Algorithm including Acceleration Feedback (가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어)

  • 문석준;정태영
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.215-224
    • /
    • 1996
  • Active vibration control is generally used to reduce vibration level by the actuators based on measured signal. Dynamic properties of a structure can be easily modified by the active vibration control, so that the vibration level may be effectively reduced to the magnitude below the allowable limit over a wide frequency rangs. In this paper, an instantaneous optimal control algorithm including acceleration feedback is presented for the active vibration control of large structures considering facts that the acceleration response can be easily measured, but the displacement and velocity response are obtained by numerically integrating the measured acceleration response with some errors. The adverse effect of the time delay is overcomed by taking into account the dynamic characteristics of an actuator and filters in the design of controller. Performance test is carried out using a hydraulic active mass driver on a test structure$(L{\times}W{\times}H;=;1200mm{\times}800mm{\times}1600mm, about;500kg)$ supported by four columns under base excitations. It is confirmed that the vibration level of the test structure are reduced to about 1/6 near resonance.

  • PDF

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

A Study on Design and Control of Electro-Hydraulic Pump System (전기.유압펌프 시스템의 설계 및 제어에 관한 연구)

  • 박성환;하석홍;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1062-1070
    • /
    • 1995
  • The study deals with controlling the velocity of hydraulic motor with PI controller through the control of displacement pump which has higher efficiency than valve-controlled system. This was done as follows. First, we modified original displacement pump and designed this electrohydraulic puma system. Second, after experimenting static and dynamic characteristics, we identified system parameter of approximated model. Lastly, to control the velocity of hydraulic motor we controlled the angle of the swash plate of displacement pump. Test carried out in the laboratory shows that transient and steady state response could be improved by PI controller reducing power loss.

A Study on PWM Control of Hydraulic Cylinder Using High Speed Solenoid Valve (고속전자밸브를 이용한 유압실린더의 PWM 제어에 관한 연구)

  • Park, S.H.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.138-147
    • /
    • 1995
  • The conventional PWM method, which was used in controlling the on-off valve, such as high-speed solenoid valve, was modulating the width of the pulse applied to the valve, by selecting arbitrary sampling time and modulating the duty-ratio in proportion to the error. However, in this method, a selection of long sampling time was inevitable and it was unable to get a high accuracy and a quick response. This study is for designing an appropriate controller for high-speed solenoid valve by proposing an improved duty-ratio modulation method using the Saw-toothed Carrier Wave which enables a short sampling time selection, high accuracy of control, and a quick response. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF

A Study on the Circuit Composition and Characteristics Analysis for Heavy-Duty Vehicular Hybrid Hydraulic Driving System (대형 자동차 하이브리드 유압 구동시스템의 회로구성과 특성해석에 관한 연구)

  • 이재구;이재천;한문식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.197-204
    • /
    • 2004
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. Also accumulator tests were conducted for different load mass and motor speed. A series of test work were carried out in the laboratory and the dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, were investigated in both brake action and acceleration action and these results show that the proposed design is effective for decision accumulator volume in ERBS.

A Study on the Hydraulic Automatic Gauge Control System of Adaptive Mass Flow Method (Adaptive mass flow method 유압압하식 자동 두께제어 장치에 관한 연구)

  • 윤순현;김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.101-107
    • /
    • 1996
  • This test was performed on the hydraulic automatic gauge control(AGC) system of adaptive mass flow method. Fundamental purpose of this study are performance evaluation of this AGC system under the actual rolling condition. It was concluded that the response of AGC system depends on the dynamic characteristics of a reel motor or roll position. The test results are as follows : 1) The control method of reel motor current is better than than of the roll position as AGC system. 2) The more steel strip thickness of delivery side is thick, the larger the gauge deviation is large, and the more it is thin, the larger the gauge deviation rate is large. 3) Because the gauge deviation is large at acceleration and deceleration speed than steady speed, so AGC system is better to adopt over 50m/min. By applying this AGC system, not only the accurary in strip thickness were improved but also productivity was improved dramatically.

  • PDF