• Title/Summary/Keyword: hydraulic response test

Search Result 86, Processing Time 0.024 seconds

Design and Implementation of the Cable Rod Hydraulic Actuator for Robotic Revolute Joints (로봇의 회전관절을 위한 케이블 로드를 갖는 유압 구동기 설계 및 구현)

  • Kim, Jungyeong;Park, Sangdeok;Cho, Jungsan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.723-730
    • /
    • 2016
  • This paper presents a cable-driven hydraulic actuator named Cable Rod Hydraulic Actuator (CRHA). The cable actuating system is attractive for designing a compact joint in robotic applications since it can be installed remotely from the joint. Recently, cable rods have been used in pneumatic area for inertia reduction. However, designing cable rods in hydraulics is challenging because it is difficult to achieve flexibility and endurance simultaneously under high pressure conditions. In this paper, the cable rod, which consists of a cable and jacket, is proposed to meet both requirements. To design the CRHA, we determined the design parameters, such as cylinder size, and selected the cable rod's material by friction and leakage test. Finally, comparisons experiments about step and frequency responses with conventional hydraulic actuators were performed to assess feasibility for robotic joints, and the results show that the proposed system has good bandwidth and fast response as robotic joints.

Shimmy Vibration Analysis of Steering Wheel including Hydraulic Power Steering System (유압동력 조향시스템의 동역학 모델링을 통한 시미진동 해석)

  • 손정현;유완석;김광석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.217-223
    • /
    • 2003
  • The power steering system has been adopted in most vehicle system for an easy maneuverability. In this paper, a hydraulic power steering(HPS) model for the computer simulation is developed and used to power steering simulation. The simulation shows that the steering wheel torque with HPS model is less than that without HPS model. In addition, the shimmy vibration at the steering wheel is also simulated and compared to the test data. The lateral displacement of the steering wheel is calculated by imposing the lateral acceleration of the knuckle as a vibration input. The frequency response of the steering wheel is in a good agreement to the test data.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Ground Thermal Conductivity Test with A Wireless Probe (무선 전자식 장비를 이용한 지중열전도도 측정 기술)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul;Ko, Gun-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2381-2384
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic Response Test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless probe for hi-speed k determination was introduced in this paper. This technique using a wireless probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. As a result, the electronic wireless probe can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of local heat flow, etc.

  • PDF

SIMULATED AP1000 RESPONSE TO DESIGN BASIS SMALL-BREAK LOCA EVENTS IN APEX-1000 TEST FACILITY

  • Wright, R.F.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.287-298
    • /
    • 2007
  • As part of the $AP1000^{TM}$ pressurized water reactor design certification program, a series of integral systems tests of the nuclear steam supply system was performed at the APEX-1000 test facility at Oregon State University. These tests provided data necessary to validate Westinghouse safety analysis computer codes for AP1000 applications. In addition, the tests provided the opportunity to investigate the thermal-hydraulic phenomena expected to be important in AP1000 small-break loss of coolant accidents (SBLOCAs). The APEX-1000 facility is a 1/4-scale pressure and 1/4-scale height simulation of the AP1000 nuclear steam supply system and passive safety features. A series of eleven tests was performed in the APEX-1000 facility as part of a U.S. Department of Energy contract. In all, four SBLOCA tests representing a spectrum of break sizes and locations were simulated along with tests to study specific phenomena of interest. The focus of this paper is the SBLOCA tests. The key thermal-hydraulic phenomena simulated in the APEX-1000 tests, and the performance and interactions of the passive safety-related systems that can be investigated through the APEX-1000 facility, are emphasized. The APEX-1000 tests demonstrate that the AP1000 passive safety-related systems successfully combine to provide a continuous removal of core decay heat and the reactor core remains covered with considerable margin for all small-break LOCA events.

Pressure Drop and Flow-Induced Vibration Test for the HANARO Non-instrumented Irradiation Test Rig of Annular Fuel Pellet (환형소결체 하나로 조사시험용 무계장 리그의 차압 및 유동유발 진동시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Bang, Jae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.281-286
    • /
    • 2007
  • Needs of fuel's performance evaluation for the dual-cooled fuel pellet (annular shape) necessitate the irradiation test in the test reactor. Irradiation test rig for the HARARO reactor, which is a special-purposed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this paper, pressure drop and flow-induced vibration test for the newly developed non-instrumented test rig were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin. The spectral response characteristics of the flow-induced vibration of the test rid were also discussed.

  • PDF

DEVELOPMENT OF A CONTINUOUSLY VARIABLE-SPEED TRANSMISSION FOR AGRICULTURAL TRACTOR

  • Kim, H. J.;Kim, E. H.;K. H. Ryu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.162-169
    • /
    • 2000
  • This study was carried out to develop a continuously variable-speed transmission(CVT) for agricultural tractor. A full-toroidal CVT mechanism with four discs and six rollers was selected as a device for changing speed ratio continuously. In the step of system layout design, the sizes of roller cylinders and end-load cylinder, which were critical factors for controlling the variator, were designed. Also the control pressure range was designed to limit the contact pressure of variator. In order to make the maximum speed of vehicle as 30km/h, the planetary gear and the six pairs of gears were designed. Also the hydraulic clutch, silent chain, hydraulic manifold and electronic controller were designed. After the design, a prototype with CVT controller was developed and tested. The speed of vehicle was changed continuously to the speed set by driver and the settling time was about 0.52 second at the step-response test (reduction ratio of variator 2.0 to 1.0), which was acceptable as a response time for working with tractor.

  • PDF

A study on the dynamics of a turbine-meter-type flowmeter for hydraulic systems

  • Yokota, Shinichi;Kim, Do-Tae;Suzuki, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.60-65
    • /
    • 1994
  • In this study, the dynamic characteristics of a turbine-meter-type flowmeter is investigated by making use of the remote instantaneous flow rate measurement method (RIFM). The results of the frequency response test indicated that the gain of the flow rate of the turbine-meter-type flowmeter relative to the flow rate of the RIFM was nearly unity up to 40Hz and the phase lag of the flow rate became 90 degrees at 70Hz.

  • PDF

Characteristics of Solenoid on the Shape for Electric Control Injector in Diesel Engine (디젤엔진 분사기용 솔레노이드의 형상에 따른 솔레노이드의 특성)

  • 조규학;라진홍;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.405-411
    • /
    • 2003
  • An electric control fuel injector of a diesel engine injection systems is very important apparatus for fuel economy and emission control. It's performance was influenced by hydraulic contro1 of valve and solenoid especially the solenoid was important factor for operation and control of injector. In this paper. we made solenoids of 4 type. which changed the shape of armature and core. and measured magnetic force according to input current, and analyzed characteristics of solenoid on the shape through the test results.

Performance Analysis of Water Systems under Hazardous Conditions

  • Liu, Gee-Yu
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.10-15
    • /
    • 2010
  • The performance analysis of water systems is very important to urban disaster mitigation. It will benefit the task of preparedness and emergency response through a more practical and more quantitative approach. In this research work, an overview of hydraulics of water system has been provided. A methodology for such implementation based on scenario simulation and hydraulic analysis has been developed. The water system of Taipei Water Department was selected as a test bed for case study. Its serviceability following a major earthquake around Taipei metropolitan area has been quantified.

  • PDF