• 제목/요약/키워드: hydraulic parameter

검색결과 429건 처리시간 0.029초

강인 포화 제어기의 안정성에 관한 실험적 검증 (Experimental Verification on Stability of Robust Saturation Controller)

  • 임채욱;문석준;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.223-226
    • /
    • 2005
  • In previous research, we proposed robust saturation controller which involves both actuator's saturation and structured real parameter uncertainties. This controller can analytically prescribed the upper and lower bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. And the availability and the effectiveness of the proposed robust saturation controller were verified through numerical simulations. In this paper, we verify the robust stability of this controller through experimental tests. Especially, we show unstable cases of other controllers in comparison with this controller. Experimental tests are carried out in the laboratory using a two-story test structure with a hydraulic-type active mass damper.

  • PDF

산성토의 불포화 특성곡선 산정 (Estimation on Unsaturated Characteristic Curves of Acid Sulfate Soils (ASS))

  • 송영석
    • 지질공학
    • /
    • 제28권1호
    • /
    • pp.25-34
    • /
    • 2018
  • 본 연구에서는 산성토를 대상으로 물리적 특성과 불포화 특성을 조사 및 분석하였다. 부산 일광광산 주변의 산성토를 대상으로 물리적 특성을 조사한 결과 건조단위중량이 $1.246t/m^3$이며, 통일분류법(USCS)상 실트질 모래(SM)에 해당된다. 자동 흙-함수특성곡선(SWCC) 측정장치를 이용하여 건조 및 습윤과정에 대한 흙-함수특성곡선(SWCC)을 산정하였다. 그리고 계수예측방법 가운데 가장 널리 활용되고 있는 van Genuchten (1980) 모델을 적용하여 건조 및 습윤과정에 따른 산성토의 불포화 투수계수함수(HCF)를 산정하였다. 산성토의 불포화 투수계수함수(HCF)는 건조과정의 경우 모관흡수력이 증가함에 따라 지속적으로 감소하지만 습윤과정의 경우 모관흡수력이 낮은 수준에서 상대적으로 작게 감소하고, 수분함입치 직전에 크게 감소함을 알 수 있다. 한편, 건조 및 습윤과정에서의 흙-함수특성곡선과 불포화 투수계수함수는 모두 이력현상이 발생되었다.

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.

경운토양의 물리적 특성변화를 고려한 Green And Ampt 매개변수의 추정 (Green and Ampt Parameter Estimation Considering Temporal Variation of Physical Properties on Tilled Soil)

  • 정하우;김성준
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.120-129
    • /
    • 1991
  • This study refers to temporal variation of physical properties of tilled soil under natural rainfalls. Field measurements of porosity, average hydraulic conductivity and average capillary pressure head on a tilled soil were conducted by soil sampler and air-entry permeameter respectively at regular intervals after tillage. Temporal variation of these physical properties were analysed by cumulative rainfall energy since tillage. Field experiment was conducted on a sandy loam soil at Suwon durging April~July in 1989. The followings are a summary of this study results ; 1. Average porosity just after tillage was 0.548cm$^3$/cm$^3$. As cumulative rainfall energy were increased in 0.1070, 0.1755, 0.3849 J/cm$^2$, average porosity were decreased in 0.506, 0.4]95, 0.468m$^3$/cm$^3$ respectively. 2. Average hydraulic conductivity just after tillage was 45.42cm/hr. As cumulative rainfall energy were increased in 0.1755, 0.2466, 0.2978, 0.3849J/cm$^2$ average hydraulic conductivity were decreased in 15.34, 13.47, 9.58, 8.65cm/hr respectively. 3. As average porosity were decreased in 0.548, 0.506, 0.495, 0.468cm$^3$/cm$^3$ average capillary pressure head were increased in 6.1, 6.7, 6.9, 7.4cm respectively. 4. It was found that temporal variation of porosity, average hydraulic conductivity on a tilled soil might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity. 5. The results of this study may be helpful to predict infiltration into a tilled soil more accurately by considering Temporal variation of physical properties of soil.

  • PDF

수직형 지중열교환기 열전도도 측정기술에 관한 연구 (A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger)

  • 김지영;이의준;장기창;강은철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3996-4001
    • /
    • 2023
  • The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.

SAMPLING BASED UNCERTAINTY ANALYSIS OF 10 % HOT LEG BREAK LOCA IN LARGE SCALE TEST FACILITY

  • Sengupta, Samiran;Dubey, S.K.;Rao, R.S.;Gupta, S.K.;Raina, V.K
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.690-703
    • /
    • 2010
  • Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between $5^{th}$ and $95^{th}$ percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

등가자기회로를 활용한 콜레노이드 타입 선형 액츄에이터 설계 알고리즘 개발 (Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator)

  • 한동기;장정환
    • 한국자기학회지
    • /
    • 제26권2호
    • /
    • pp.55-61
    • /
    • 2016
  • 본 논문에서는 설계변수 변화에 따른 특성을 빠른 시간 내에 파악할 수 있는 등가자기회로법(equivalent magnetic circuit method)을 활용하여 콜레노이드(colenoid) 타입의 선형 액츄에이터 설계 알고리즘을 제시하였다. 우선 선형 액츄에이터의 중요치수가 결정되면 등가자기회로법에 의해 슬롯 폭 비율 및 인가전류에 따른 클램핑력으로 파라미터 맵(parameter map)을 완성하고 이를 활용하여 효율적인 슬롯 폭 비율을 결정하였다. 또한 최대 클램핑력(clamping force)을 얻기 위해 극 폭 조절 알고리즘을 수행하여 최적의 극 폭 치수를 선정하였으며 이를 바탕으로 인가전류에 따른 클램핑력을 계산하여 40 kN 이상 출력하기 위한 최적의 극 수, 극 폭 치수 및 인가전류를 결정하였다. 제안된 설계 알고리즘은 최적설계 방법인 반응표면법(response surface method)과 비교하여 제안한 설계 알고리즘의 타당성을 검증하였다.

국내 대수층 특성을 반영한 포화대 내 유류오염물질 거동 개념 모델에서 수리동역학적 및 반응 입력인자 민감도 평가 (Sensitivity Analysis of Hydrodynamic and Reaction Parameters in Gasoline Transport Conceptual Aquifer Model Based on Hydrogeological Characteristics of Korea)

  • 주진철;이동휘;문희선;장선우;이수형;이은희;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권1호
    • /
    • pp.37-52
    • /
    • 2020
  • Sensitivity analysis of hydrodynamic and reaction parameters in conceptual model reflecting aquifer characteristics of Korea was performed to evaluate the uncertainty in the predicted concentrations. Among the hydrodynamic input parameters, both hydraulic conductivity (Kx) and hydraulic gradient (I) affected transport behaviors of contaminants, and resulted in same convergence concentrations with continuous injections of contaminant. However, longitudinal dispervisity (αL) affected both transport behaviors and the convergence concentrations of contaminants. Compared to the hydrodynamic parameters, growth kinetic and degradation parameters (μm & Kc) more significantly affected both transport behaviors and the convergence concentrations of contaminants, indicating those parameters had higher sensitivity indices causing the uncertainties of model predictions. Considering that the sensitivity indices of both hydrodynamic and reaction parameters were a function of transport distance of groundwater, the parameters with higher sensitivity indices, a priori, need to be investigated using conceptual model reflecting site-specific aquifer characteristics before field investigation. After determining the parameters with higher sensitivity indices, the detail field investigations for the selected hydrodynamic and reaction parameters were warranted to reduce the uncertainties of model predictions.