• Title/Summary/Keyword: hydraulic impact pressure

Search Result 69, Processing Time 0.034 seconds

An evaluation of the pipe failure impact in a water distribution system considering subsystem isolation (상수관 파괴시 관망의 부분적 격리를 고려한 피해범위 산정)

  • Jun, Hw-Andon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.89-98
    • /
    • 2006
  • To evaluate the pipe failure impact, current methodologies consider only a broken pipe as the impacted area. However, these approaches are accurate if the broken pipe is the only area isolated from tile system. Depending on the number and locations of on-off valves, more pipes which are adjacent to a broken pipe may be isolated. Using the concept of Segment suggested by Walski, the methodology evaluating the pipe failure impact incorporated with on-off valve locations has been suggested by Jun. However, a segment cannot account for all possible pipe failure impacted areas since it does not consider additional failures, namely the network topological failure and the hydraulic pressure failure. For this reason, a methodology which can consider the network topology and hydraulic pressure limitation as well as on-off valve locations is suggested. The suggested methodology is applied to a real network to verify its applicability As results, it is found that a single pipe failure can affect huge areas depending on the configuration of on-off valves and the network topology. Thus, the applicability of the suggested methodology for evaluating the pipe failure impacts on a water distribution network is proved.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

An Analysis of Mechanism of Auto-Sensing Breaker's Automatic Impact (지능형 브레이커의 자동타격 메카니즘 분석)

  • Park, Sung-Su;Noh, Dae-Kyung;Lee, Dae-Hee;Lee, Geun-Ho;Kang, Young-Ky;Cho, Jae-Sang;Jang, Joo-sup
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.31-42
    • /
    • 2016
  • This study aims to identify the core technology for the automatic impact of the auto-sensing breaker that is one of the construction machinery which do not have a notable development success case yet in Korea. The study has been carried out as follows. Firstly, an analysis model was developed after determining the interconnection of pressure receiving area, opening area and port. And then, a simulation of situation that hard rock and soft rock are mixed was carried out to verify if it is possible to switch between long impact mode and short impact mode continuously. Lastly, the dynamic behavior of automatic control valve induced by the change of impact mode was analyzed based on the analysis result to decipher the core principle of automatic impact control.

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling (해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구)

  • Hong, Eun-Soo;Park, Eui-Seob;Shin, Hee-Soon;Kim, Hyung-Mok;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.366-374
    • /
    • 2008
  • Tunnelling under water table induces many geotechnical problems because of groundwater. In subsea tunneling, reduction of face stability can induce flooding in the vicinity of a fracture zone characterized by high permeability and high water pressure. In this study, the effects of high water pressure on the stability of a tunnel face in a limited zone with high permeability(hazardous zone) are analyzed. On the basis of the 'advance core' concept, the seepage force acting on a hypothetical cylinder ahead of a tunnel face is modeled. This study focuses on the hydraulic behavior of the ground ahead of the tunnel face by three-dimensional steady-state seepage analyses. The impact of the hazardous zone on the seepage force and stability of the tunnel face are simulated and analyzed. In light of the analysis results, it is estimated that the distance from the tunnel face to the exterior boundary limit, which the seepage force significantly affects the stability of the tunnel face, of a hypothetical cylinder is approximately 5 times the tunnel radii. Despite the restrictive assumptions of this study, the results are highly indicative regarding the risks of hazardous zones.

Study on critical buckling load calculation method of piles considering passive and active earth pressure

  • Chen, Yong-Hui;Chen, Long;Xu, Kai;Liu, Lin;Ng, Charles W.W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.367-382
    • /
    • 2013
  • Different types of long slender pile shall buckle with weak soil and liquefied stratum surrounded. Different from considering single side earth pressure, it was suggested that the lateral earth pressure can be divided into two categories while buckling: the earth pressure that prevent and promotes the lateral movement. Active and passive earth pressure calculation model was proposed supposing earth pressure changed linearly with displacement considering overlying load, shaft resistance, earth pressure at both sides of the pile. Critical buckling load calculation method was proposed based on the principle of minimum potential energy quoting the earth pressure calculation model. The calculation result was contrasted with the field test result of small diameter TC pile (Plastic Tube Cast-in-place pile). The fix form could be fixed-hinged in the actual calculation assuring the accuracy and certain safety factor. The contributions of pile fix form depend on the pile length for the same geological conditions. There exists critical friction value in specific geological conditions that the side friction has larger impact on the critical buckling load while it is less than the value and has less impact with larger value. The buckling load was not simply changed linearly with friction. The buckling load decreases with increased limit active displacement and the load tend to be constant with larger active displacement value; the critical buckling load will be the same for different fix form for the small values.

Simulation Analysis on Static Safety of 55Hp-Servo-Based Hydrostatic Transmission (시뮬레이션 기반의 55마력급 서보식 정유압 무단변속기 정적구조안정성 분석)

  • Won, Jonggeun;Yoon, Jongil;Lee, Hyunah;Chung, Seonggyo;Jeong, Jaesu
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.34-42
    • /
    • 2022
  • Hydrostatic transmission (HST) comprises rotary parts, shafts, valve plate, swashplate, and servo pistons. Ensuring structural stability of each part of an HST has a significant impact on product safety. In this study, the structural stability of HST in agricultural machinery and industrial vehicles was analyzed using ANSYS software. For conservative evaluation, high-pressure conditions (35.5 MPa and 2 MPa pilot pressure) were applied as load conditions. The number of grids used in the calculations ranged from 0.4 to 0.8 million depending on modeling requirements. Structural analysis was performed for essential parts and safety factor was analyzed. All major parts of HST had a safety factor of ≥ 1.5. Thus, they were judged to be structurally safe. This study provides important information for designing an HST system.