• 제목/요약/키워드: hydraulic impact pressure

검색결과 69건 처리시간 0.025초

상수관 파괴시 관망의 부분적 격리를 고려한 피해범위 산정 (An evaluation of the pipe failure impact in a water distribution system considering subsystem isolation)

  • 전환돈
    • 한국수자원학회논문집
    • /
    • 제39권2호
    • /
    • pp.89-98
    • /
    • 2006
  • 기존의 상수관 파괴로 인한 피해 영역의 산정에서는 파괴된 관만을 피해영역으로 고려하였으나 이는 파괴된 관만이 차폐되었을 경우에만 정확하다 할 수 있다. 차폐에 이용되는 밸브의 배치에 따라 추가로 더 많은 관들이 파괴된 관과 함께 차폐가 될 수 있으며 Walski에 의하여 제안된 segment 개념으로 이러한 추가적인 관의 차폐를 고려할 수 있는 방법이 Jun에 의해서 개발되었다. 그러나, segment 개념으로 찾아질 수 있는 피해영역보다 더 많은 부분이 관 파괴의 영향을 받을 수 있으며, 이는 관들의 연결형상에 의한 차폐와 용수 수요지점에서 적정한 압력수두를 확보하지 못하여 발생하는 추가적인 피해에 기인한다 본 연구에서는 밸브의 위치에 따른 추가적인 피해영역과 함께 관들의 연결형상 그리고 압력수두에 따른 피해를 순차적으로 고려할 수 있는 방법을 제안하여 제안된 방법을 실제 상수관망에 적용하여 적용성을 검토한다 실제 상수관망에 적용한 결과 한 개의 상수관 파괴에 의한 피해 영역이 밸브위치와 용수노선의 설계에 따라 많은 지역에 피해를 발생시킬 수 있음을 보여 주고 있다. 따라서 본 연구에서 제안된 방법을 적용하여 산정된 상수관 파괴에 따른 피해영역이 현실을 정확히 반영함을 알 수 있었다.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

지능형 브레이커의 자동타격 메카니즘 분석 (An Analysis of Mechanism of Auto-Sensing Breaker's Automatic Impact)

  • 박성수;노대경;이대희;이근호;강영기;조재상;장주섭
    • 한국시뮬레이션학회논문지
    • /
    • 제25권4호
    • /
    • pp.31-42
    • /
    • 2016
  • 본 연구는 국내에서는 현재 개발 성공사례가 없는 건설 장비 중 하나인 지능형 브레이커의 자동타격조절 핵심기술을 파악하는 것을 목적으로 하고 있다. 연구진행은 다음과 같은 절차로 진행된다. 우선 수압면적과 개도면적, 포트의 연결 관계를 파악하여 해석모델을 개발한다. 그리고 해석모델에 경암과 연암을 오가는 상황을 모사하여 연속적으로 장타모드와 단타모드의 가변이 가능한지 검증한다. 마지막으로 해석결과로부터 타격모드가 가변될 때 발생하는 자동제어밸브의 동적거동을 분석하여, 자동타격조절의 핵심원리를 파악한다.

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구 (A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling)

  • 홍은수;박의섭;신희순;김형목;류동우
    • 터널과지하공간
    • /
    • 제18권5호
    • /
    • pp.366-374
    • /
    • 2008
  • 지하수면하의 터널 굴착은 물로 인한 많은 지반공학적 문제가 나타나며, 해저터널의 경우 높은 투수성과 고수압을 나타내는 파쇄대 근처에서의 안전율 감소로 인한 침수사고를 유발될 수 있다. 이 연구에서는 유한한 폭의 투수성이 높은 구간(문제구간) 에서 터널 안전성에 대한 수압의 영향에 대하여 분석하였다. advance core 개념에 따라 막장전방의 가상 실린더에 작용하는 침투력을 모사 하였으며, 3차원 정상류 침투수 해석을 통하여 막장전방 지반의 수리적 거동에 주안점을 두고 침투력과 막장면의 안정성에 대한 문제구간의 영향을 분석하였다. 그 결과 막장면으로부터 터널의 막장면 안정성에 영향을 주는 가상 실린더의 경계면까지의 거리는 터널 반경의 약 5배 정도인 것으로 추정된다. 이 연구의 적용된 가정의 제한성에도 불구하고 문제구간의 위험성을 고려할 할 때 이 연구결과가 시사하는 바가 크다.

Study on critical buckling load calculation method of piles considering passive and active earth pressure

  • Chen, Yong-Hui;Chen, Long;Xu, Kai;Liu, Lin;Ng, Charles W.W.
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.367-382
    • /
    • 2013
  • Different types of long slender pile shall buckle with weak soil and liquefied stratum surrounded. Different from considering single side earth pressure, it was suggested that the lateral earth pressure can be divided into two categories while buckling: the earth pressure that prevent and promotes the lateral movement. Active and passive earth pressure calculation model was proposed supposing earth pressure changed linearly with displacement considering overlying load, shaft resistance, earth pressure at both sides of the pile. Critical buckling load calculation method was proposed based on the principle of minimum potential energy quoting the earth pressure calculation model. The calculation result was contrasted with the field test result of small diameter TC pile (Plastic Tube Cast-in-place pile). The fix form could be fixed-hinged in the actual calculation assuring the accuracy and certain safety factor. The contributions of pile fix form depend on the pile length for the same geological conditions. There exists critical friction value in specific geological conditions that the side friction has larger impact on the critical buckling load while it is less than the value and has less impact with larger value. The buckling load was not simply changed linearly with friction. The buckling load decreases with increased limit active displacement and the load tend to be constant with larger active displacement value; the critical buckling load will be the same for different fix form for the small values.

시뮬레이션 기반의 55마력급 서보식 정유압 무단변속기 정적구조안정성 분석 (Simulation Analysis on Static Safety of 55Hp-Servo-Based Hydrostatic Transmission)

  • 원종근;윤종일;이현아;정성교;정재수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.34-42
    • /
    • 2022
  • Hydrostatic transmission (HST) comprises rotary parts, shafts, valve plate, swashplate, and servo pistons. Ensuring structural stability of each part of an HST has a significant impact on product safety. In this study, the structural stability of HST in agricultural machinery and industrial vehicles was analyzed using ANSYS software. For conservative evaluation, high-pressure conditions (35.5 MPa and 2 MPa pilot pressure) were applied as load conditions. The number of grids used in the calculations ranged from 0.4 to 0.8 million depending on modeling requirements. Structural analysis was performed for essential parts and safety factor was analyzed. All major parts of HST had a safety factor of ≥ 1.5. Thus, they were judged to be structurally safe. This study provides important information for designing an HST system.