• Title/Summary/Keyword: hydraulic flushing

Search Result 32, Processing Time 0.056 seconds

Flood Risk Management for Weirs: Integrated Application of Artificial Intelligence and RESCON Modelling for Maintaining Reservoir Safety

  • Idrees, Muhammad Bilal;Kim, Dongwook;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.167-167
    • /
    • 2020
  • Annual sediment deposition in reservoirs behind weirs poses flood risk, while its accurate prediction remains a challenge. Sediment management by hydraulic flushing is an effective method to maintain reservoir storage. In this study, an integrated approach to predict sediment inflow and sediment flushing simulation in reservoirs is presented. The annual sediment inflow prediction was carried out with Artificial Neural Networks (ANN) modelling. RESCON model was applied for quantification of sediment flushing feasibility criteria. The integrated approach was applied on Sangju Weir and also on estuary of Nakdong River (NREB). The mean annual sediment inflow predicted at Sangju Weir and NREB was 400,000 ㎥ and 170,000 ㎥, respectively. The sediment characteristics gathered were used to setup RESCON model and sediment balance ratio (SBR) and long term capacity ratio (LTCR) were used as flushing efficiency indicators. For Sangju Weir, the flushing discharge, Qf = 140 ㎥/s with a drawdown of 5 m, and flushing duration, Tf = 10 days was necessary for efficient flushing. At NREB site, the parameters for efficient flushing were Qf = 80 ㎥/s, Tf = 5 days, N = 1, Elf = 2.24 m. The hydraulic flushing was concluded feasible for sediment management at both Sangju Weir and NREB.

  • PDF

A Theoretical Investigation of Roll-Off Cleanliness for Hydraulic System and Application to a Tractor (유압시스템 롤-오프 청정도의 이론적 고찰 및 트랙터에의 응용)

  • 이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.207-215
    • /
    • 2000
  • This study theoretically investigated the roll-off cleanliness operation to eliminate the built-in contaminants which are primarily the result of manufacturing and assembly procedures first. A rigorous analytical examination of the cleaning process associated with hydraulic systems was performed by developing the general filtration process equations. The sloughing process by which built-in contaminant is entrained in the system fluid was examined during the development of a general analytical expression for sloughing rate. This sloughing rate expression in conjunction with the filtration process equations have lead to a relationship rate expression in conjunction with the filtration process equations have lead to a relationship which describes the flushing and clean-up operation for the hydraulic systems. The effects of the primary roll-off cleanliness factors was discussed and illustrated on the figures. Then, the analytical results was shown to be usefully applied into the design of roll-off flushing equipment for the hydraulic system of a tractor.

  • PDF

Investigation of Dimension Changes in Under Pressure Hydraulic Sediment Flushing Cavity of Storage Dams Under Effect of Localized Vibrations in Sediment Layers

  • Dodaran, Asgar Ahadpour;Park, Sang-Kil;Mardashti, Asadollah;Noshadi, Masoud
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-81
    • /
    • 2012
  • Several methods have been proposed to control the sedimentation process. These include catchment management, flushing, sluicing, density current venting, and dredging. Flushing is used to erode previously deposited sediments. In pressurized flushing, the sediment in the vicinity of the outlet openings is scoured and a funnel shaped crater is created. In this study, the effect of localized vibrations in the sediment layers on the dimensions of the flushing cone was investigated experimentally. For this purpose, experiments were carried out with two bottom outlet diameters, five discharge releases for each desired water depth, and one water depth above the center of the bottom outlets. The results indicate that the volume and dimensions of the flushing cone are strongly affected by localized vibrations.

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

Remediation of Soils Contaminated with Co by Solvent Flushing Method (코발트 오염토양에 대한 Solvent Flushing방법에 의한 제염)

  • 김계남;원휘준;김희연;이병직;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.41-47
    • /
    • 1998
  • The solvent flushing apparatus for soil remediation was manufactured. After the soil around nuclear facilities was sampled and was compulsorily contaminated by Co, the remediation characteristics by solvent flushing were analyzed. Meanwhile, one-dimensional solute transport within nonequilibrium sorption code was developed for modelling of the soil remediation, input parameters for modelling were measured by laboratory experiment. Experimental results are as follows : When water was used as a solvent, the higher was the hydraulic conductivity, the higher the efficiency of soil remediation was. When EDTA solution was used as a solvent, the soil remediation efficiency of EDTA solution showed higher than that of water.

  • PDF

A study on the simulation method for the flushing flowrate and velocity in the watermain using a hydrant and a drain valve (소화전과 이토변을 이용한 플러싱 적용 시 관 내 세척유량과 유속 모의 방안에 관한 연구)

  • Gim, ARin;Lee, Eunhwan;Lee, SongI;Kim, kwang hyun;Jun, Hwandon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1251-1260
    • /
    • 2022
  • Recently, due to the deterioration of watermains and the detachment of scale which is accumulated on the watermain surface, water quality accidents in a water supply network occur frequently. As scale accumulated on watermains is stabilized, it may not cause water quality accidents under the normal operating condition. However, due to water hammer or transient flow caused by the abrupt velocity and/or direction of flow change, it can be detached from the watermain surface resulting in water quality accidents. To prevent these kinds of water quality accidents, it is required to remove scale by watermain cleaning regularly. Many researches about flushing which is the most popular water cleaning method are focused on the desirable velocity criteria and the cleaning condition to accomplish the effect of flushing whereas less amount of research effort is given to develop a method to consider whether the desirable velocity for flushing can be obtained before flushing is performed. During flushing, the major and minor headloss is occurred when flushing water flows through a hydrant or drain valve. These headloss may slow down the velocity of flushing water so that it can reduce the flushing effect. Thus, in this study, we suggest a method to simulate the flow velocity of flushing water using "MinorLoss Coefficient" and "Emitter Coefficient" in EPANET. The suggested method is applied to a sample network and the water supply network of "A" city in Korea to compare the flushing effect between "flushing through a hydrant" and "flushing through a drain valve". In case of "flushing through a hydrant", if the hydraulic condition ocurring from a watermain pipe connecting to the inlet pipe of a hydrant to the outlet of a hydrant is not considered, the actual flowrate and velocity of a flow is less than the simulated flowrate and velocity of a flow. In case of "flushing through a drain valve", the flushing velocity and flowrate can be easily simulated and the difference between the simulated and the actual velocity and flowrate is not significant. Also, "flushing through a drain valve" is very effective to flushing a long-length pipe section because of its efficiency to obtain the flushing velocity. However, the number and location of a drain valve is limited compared to a hydrant so that "flushing through a drain valve" has a limited application in the field. For this reason, the engineer should consider various field conditions to come up with a proper flushing plan.

Investigation on the Effect of Stress Waves on Soil Flushing (토양세척에 있어서 탄성파의 효과에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.37-40
    • /
    • 2000
  • Acoustically enhanced soil flushing method is a newly developed in-situ remediation technique. However, there has not been an analytical method that can be used to evaluate the effectiveness of ultrasonic wave under different conditions. This study was undertaken to investigate the degree of enhancement in contaminant removal due to ultrasonic energy on the soil flushing method. The test conditions included different levels of ultrasonic power and hydraulic gradient. The test soils were Ottawa sand, a fine aggregate, and a natural soil, and the surrogate contaminant was a Crisco Vegetable Oil. The test results showed that sonication could increase contaminant removal significantly. Increasing sonication power increased pollutant removal. The faster the flow is, the smaller the degree of enhancement will be. The pollutants in dense soils are more difficult to be removed than in loose soils.

  • PDF