• Title/Summary/Keyword: hydraulic constant

Search Result 379, Processing Time 0.031 seconds

Hydraulic Property and Solute Breakthrough from Salt Accumulated Soils under Various Head Pressures

  • Lee, Sanghun;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeong-Bo;Yang, Chang-Hyu;Kim, Hong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.717-724
    • /
    • 2012
  • Salt accumulated soil should be reclaimed to lower salt level for crop production. This study was carried out to investigate the characteristics of water flow and transport of mono and divalent solutes on salt accumulated soils with different head pressures. Saturated hydraulic conductivity was measured by constant and falling head methods with maintaining different head pressures. Saturated hydraulic conductivity was influenced by bulk density and organic matter contents in soils, but it had different elusion patterns between saline and sodic soil. While the quantity of water necessary for reclamation could be varies with soil type, it was considered that the supply of one pore volume of water was affordable and economic. Additional head pressure significantly increased the volume of leachate at a given time and it was more effective at low organic matter soils. The results indicate that additional head pressure would be one of the best irrigation practices on desalination method for salt accumulated soils.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

A study on using the lime sludge as a sanitary landfill liner (위생매립지 차수재로써의 부산석회 이용에 관한 연구)

  • 구자공;도남영;임재신;이상민;김남돈
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.149-161
    • /
    • 1999
  • In this study, to examine the applicability of the lime sludge as a landfill liner, 1) the geoechnical characteristics of sludge, 2) the characteristics of migrations of contaminants, and 3) the characteristic of leaching in the batch leaching test are investigated As a result, the hydraulic conductivity(K) of the lime sludge was found out to have 10 times lower hydraulic conductivity than the maximum allowable hydraulic conductivity of the liner Retardations of heavy metals(Cu, Pb) were found out to be higher than that of organic(phenol) due to the high pH(>11.0) of 4he lime sludge. As a result of the leaching test. the concentrations of Pb and Cu were found to be close to allowable limitation, so that they need to be kept in constant watch.

  • PDF

Estimation of Hydraulic Properties in Porous Media (다공성 매질의 수리특성 추정)

  • Park, Jae-Hyeon;Park, Chang-Kun;Soun, Jung-Ho
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.107-113
    • /
    • 1994
  • The analysis of Richards eq. requires data of the soil water retention function and the unsaturated hydraulic conductivity. The soil water retention function was measured through the use of the developed apparatus and the saturated hydraulic conductivity was measured by the constant head method for each soil sample corresponding to the A, B, C types of SCS. In order to obtain one water retention function and one unsaturated hydraulic conductivity which represent each soil group, van Genuchten's eq. and Mualem's pore-structure model was chosen respectively. Parameters of van Genuchten's eq. are estimated for each soil group using data obtained in the experiments, and estimated values give a basis to analyze the unsaturated flow in the non-measured region efficiently.

  • PDF

Hydraulic Performance of Francis Turbine with Various Discharge Angles (유출각 변화에 따른 프란시스 수차 성능해석)

  • Jeon, J.H.;Byeon, S.S.;Choi, Y.C.;Park, J.S.;Kim, Y.J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.10-14
    • /
    • 2013
  • In this study, we have numerically investigated the hydraulic efficiency with various values of discharge angle($11^{\circ}$, $12^{\circ}$, $14^{\circ}$, $15^{\circ}$, $17^{\circ}$, $18^{\circ}$, $20^{\circ}$) in the Francis turbine of hydropower generation under 15MW with fixed values of head range of 151m and flow rate($10.97m^3/s$). We also conducted the numerical analysis with constant inlet angle in the Francis turbine using the commercial code, ANSYS CFX. Hydraulic characteristics for different values of the runner blade angle are investigated. The results showed that the change of discharge angles significantly influenced on the performance of the turbine hydraulic efficiency.

Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle (압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots (유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어)

  • Cho, Buyoun;Kim, Sung-Woo;Shin, Seunghoon;Kim, Min-Su;Oh, Jun-Ho;Park, Hae-Won
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

Effect of water temperature and soil type on infiltration

  • Mina Torabi;Hamed Sarkardeh;S. Mohamad Mirhosseini;Mehrshad Samadi
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.445-452
    • /
    • 2023
  • Temperature is one of the important factors affecting the permeability of water in the soil. In the present study, the impact of water temperature on hydraulic conductivity (k) with and without coarse aggregations by considering six types of soils was analyzed. Moreover, the effect of sand and gravel presence in the soil was investigated through the infiltration based on constant and inconstant water head experiments. Results indicated that by increasing the water temperature, adding gravel to sandy soil caused the hydraulic conductivity to raise. It is supposed that the gravel decreased the contact surface between the water and the soil aggregates. It is deduced that due to decreasing kinetic energy, k tends to have lower values. Furthermore, adding the sand to sandy silt-clay soil showed that the sand did not have a marginal effect on the variation of k since the added sand cannot increase the contact surface like gravel. Finally, increasing the main diameter of the soil will increase the effect of the water temperature on hydraulic conductivity.

In-situ Hydraulic Conductivity Testing Methods (현장 투수시험 방법)

  • Kwon Moo-nam
    • KCID journal
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 1995
  • 현장 투수시험 방법 중에서 Borehole type의 Boutwell Permeameter와 Constant head bore-hole permeameter, 그리고 Porous probe type의 cone shaped porous probe(BAT Permeameter)에 대한 내용을 간단히 소개하였고, 각 측정법의 특징을 비교분석한 내용을 요약하면 (표-1)과 같으며, 기회가 있으면 Infiltrometer type와 Underdrain type에

  • PDF

General Steady-State Shape Factors in Analyzing Slug Test Results to Evaluate In-situ Hydraulic Conductivity of Vertical Cutoff Wall (순간변위시험(slug test)시 연직차수벽의 현장투수계수를 산정하기 위한 형상계수 연구)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, Thebao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.105-116
    • /
    • 2011
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results. Recently, an analytical solution to interpret slug tests has been proposed for a partially penetrated well in an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions, the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Two boundary conditions are considered according to the existence of filter cakes: constant head boundary and no flux boundary. Generalized steady-state shape factors are presented for each geometric condition, which can be used for evaluating the in-situ hydraulic conductivity of cutoff walls. The constant head boundary condition provides higher shape factors and no flux boundary condition provides lower shape factors than the infinite aquifer, which enables to adjust the in-situ hydraulic conductivity of the cutoff wall. The hydraulic conductivities calculated from the analytical solution in this paper give about 1.2~1.7 times higher than those from the Bouwer and Rice method, one of the semi-empirical formulas. Considering the compressibility of the backfill material, the analytical solution developed in this study was proved to correspond to the case of incompressible backfill materials.