• Title/Summary/Keyword: hydraulic conditions

Search Result 1,248, Processing Time 0.025 seconds

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

Dynamic Configuration and Operation of District Metered Areas in Water Distribution Networks

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.147-147
    • /
    • 2021
  • A partition of water distribution network (WDN) into district metered areas (DMAs) brings the efficiency and efficacy for water network operation and management (O&M), especially in monitoring pressure and leakage. Traditionally, the DMA configurations (i.e., number, shape, and size of DMAs) are permanent and cannot be changed occasionally. This leads to changes in water quality and reduced network redundancy lowering network resilience against abnormal conditions such as water demand variability and mechanical failures. This study proposes a framework to automatically divide a WDN into dynamic DMA configurations, in which the DMA layouts can self-adapt in response to abnormal scenarios. To that aim, a complex graph theory is adopted to sectorize a WDN into multiscale DMA layouts. Then, different failure-based scenarios are investigated on the existing DMA layouts. Here, an optimization-based model is proposed to convert existing DMA layouts into dynamic layouts by considering existing valves and possibly placing new valves. The objective is to minimize the alteration of flow paths (i.e., flow direction and velocity in the pipes) while preserving the hydraulic performance of the network. The proposed method is tested on a real complex WDN for demonstration and validation of the approach.

  • PDF

A Numerical Study on Tsunami Run-up Heights on Impermeable/Permeable Slope (투과성 및 불투과성 경사면 상에서 지진해일의 처오름 높이에 관한 수치적 검토)

  • Lee, Woo-Dong;Hur, Dong-Soo;Goo, Nam-Heon
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In order to examine the characteristics of tsunami run-up heights on impermeable/permeable slope, a numerical wave tank by upgrading LES-WASS-3D was used in this study. Then, the model were compared with existing hydraulic model test for its verification. The numerical results well reproduced experimental results of solitary wave deformation, propagation and run-up height under various conditions. Also, the numerical simulation with a slope boundary condition has been carried out to understand solitary wave run-up on impermeable/permeable slope. It is shown that the run-up heights on permeable slope is 52.64-63.2% smaller than those on the impermeable slope because of wave energy dissipation inside the porous media. In addition, it is revealed that the numerical results with slope boundary condition agreed well with experimental results in comparison with the results by using stair type boundary condition.

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Tribological Improvement of Lubricants Using Silicone Rubber Powders in Hydrogen Compressors

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.78-83
    • /
    • 2024
  • The development of eco-friendly alternative energy sources has become a global priority owing to the depletion of fossil fuels and an increase in environmental concerns. Hydrogen energy has emerged as a promising clean energy source, and hydrogen compressors play a crucial role in the storage and distribution of compressed hydrogen. However, harsh operating conditions lead to the rapid deterioration of conventional lubricants in hydrogen compressors, thereby necessitating the development of advanced lubrication technologies. This study introduces micrometer-sized silicone rubber powders as lubricant additives to enhance the lubrication performance of hydraulic oils in hydrogen compressors. We prepare silicone rubber powders by varying the ratio of the silicone rubber base to the curing agent and investigate their effects on interfacial properties, friction behavior, and wear characteristics. The findings reveal that the incorporation of silicone rubber powders positively influences the surface affinity, wettability, friction reduction, and wear resistance of the lubricants on the 304SS substrate. Moreover, we identify the optimal lubricant formulations, with a 15:1 ratio demonstrating the most effective friction reduction and a 5:1 ratio exhibiting the highest wear resistance. The controlled surface modification by the silicone rubber powder and the enhanced interfacial characteristics of the powder-containing lubricants synergistically contribute to the improved lubrication performance. These results indicate the potential of silicone rubber powder additives for the development of long-life lubrication solutions for hydrogen compressors and related applications, ultimately contributing to the advancement of sustainable energy technologies.

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

Stream Type Classification and 2-Dimensional Hydraulic Characteristics and Bed Change in Anseongcheon Streams and Tributaries (안성천 중소하천의 하천분류 및 2차원 수리특성, 하상변동 모의)

  • Lee, Ji-Wan;Lee, Mi-Seon;Jung, In-Kyun;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.77-91
    • /
    • 2011
  • This study tries to find a streambed scouring and sedimentation characteristics through the Rosgen(1994)'s stream classification system while experiencing several flood events. The Jinwee and Osan streams, the tributaries of Anseongcheon were selected. The streams showed type C or type E. By the classification results, two Type C tributaries one Type C stream and one Type E tributary were selected. For the four selected stream reaches, the analysis of streambed change was implemented by using numerical model CCHE2D (Center for Computational Hydroscience and Engineering). To prepare the inlet boundary conditions of each stream, the WMS (Watershed Modeling System) HEC-1 was used and the streamflows of 50, 80, and 100-year return period were generated and the outlet boundary was set to an open boundary condition. The simulation results showed that when the flood pulse periodically the streambed changes also appears regularly. The results can be used to acquire the basic data for stream restoration.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF

An Experimental Study for Reduction of Energy losses at Surcharged Four-way Combining Square Manhole (과부하 4방향 사각형 합류맨홀에서의 에너지 손실 저감을 위한 실험 연구)

  • Kim, Jung Soo;Kim, Chae Rin;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.311-324
    • /
    • 2017
  • Energy loss at manholes under surcharged flow is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the flow characteristics to reduce the energy loss in the surcharged four-way combining manhole. In this study, hydraulic experimental apparatus was constructed considering the results of the present survey. Square manholes and pipe diameters were reduced to 1/5 by applying sewer facility standards. Numerical simulations were carried out with the Fluent 6.3 model to derive the invert condition which can reduce the energy loss in the surcharged four-way combining square manhole. The hydraulic experiments were carried out according to the various conditions of the lateral flow rate($Q_{lat}/Q_{out}$), discharge of outflow pipe (2.0, 3.0, 4.0, 4.8 l/sec), and invert shape (rectangle and square open conduit type). The crossed invert was not found to improve the drainage capacity of the surcharged four-way rectangular combining manhole. However, the improved rectangle open conduit type invert and square open conduit type invert were analyzed to improve the drainage capacity by reducing the head loss coefficients by about 8% and 28%, respectively. Therefore, in order to increase the drainage capacity of urban facilities, it is possible to install and use the improved invert proposed in this study.