• Title/Summary/Keyword: hydraulic behaviour

Search Result 82, Processing Time 0.027 seconds

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains

  • Nam, J.;Cantwell, Wesley;Das, Raj;Lowe, Adrian;Kalyanasundaram, Shankar
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.61-75
    • /
    • 2016
  • Climate changes brought on by human interventions have proved to be more devastating than predicted during the recent decades. Recognition of seriousness of the situation has led regulatory organisations to impose strict targets on allowable carbon dioxide emissions from automotive vehicles. As a possible solution, it has been proposed that Fibre Metal Laminate (FML) system is used to reduce the weight of future vehicles. To facilitate this investigation, FML based on steel and self-reinforced polypropylene was stamp formed into dome shapes under different blank holder forces (BHFs) at room temperature and its forming behaviour analysed. An open-die configuration was used in a hydraulic press so that a 3D photogrammetric measurement system (ARAMIS) could capture real-time surface strains. This paper presents findings on strain evolutions at different points along and at $45^{\circ}$ to fibre directions of circular FML blank, through various stages of forming. It was found initiation and rate of deformation varied with distance from the pole, that the mode of deformations range from biaxial stretching at the pole to drawing towards flange region, at decreasing magnitudes away from the pole in general. More uniform strain distribution was observed for the FML compared to that of plain steel and the most significant effects of BHF were its influence on forming depth and level of strain reached before failure.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.

A Study of the Influence of Roughness on fracture Shear Behaviour and Permeability (거칠기가 절리의 전단거동 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.312-320
    • /
    • 2002
  • It is well-known that when single rock fractures undergo shear displacement, they are influenced by the boundary conditions and fracture roughness. In this case, aperture geometry will change by means of dilation due to the shear displacement. As fractures become the flow paths, fluid flow through rock fractures is affected by the void geometry. In this study, therefore, the influence of roughness on shear behavior of fractures has been investigated, and the resulting hydraulic behavior has been analyzed. In order for this study, a statistical method has been used to generate rough fractures, and they have been adopted into new conceptual models fur fracture shearing and flow calculations. The main contributions of this study are as follows: firstly, fracture shear behavior becomes less brittle with decreasing fracture roughness and increasing normal stress. Then, the characteristics of aperture distribution becomes those of roughness of fractures indicating its hydraulic significance. Finally, it is observed that with decreasing fracture roughness the breakdown of channel flow occurs more slowly.

Analysis of Analytical Models and Numerical Model for Evaluating Induced Infiltration Rate (유도침투량의 정량화를 위한 해석모형과 수치모형의 분석)

  • Lee, Do-Hun;Lee, Eun-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.301-310
    • /
    • 1999
  • In this paper a numerical model and two analytical models in the hydraulically connected stream-aquifer system were analyzed to compare the induced infiltration rate curves derived from each model. And we also examined the effects of anisotropy of hydraulic conductivity and the direction of the ambient ground water flow on the quantification of the induced infiltration rate. The induced infiltration rate curve determined by models is very simple and useful for estimating the induced infiltration rate since it contains only four physical variables such as the induced infiltration rate, the pumping rate, the distance between the pumping well and the stream, and the ambient ground water flow rate. Under the conditions tested in this paper the induced infiltration rate curves resulted from the Wilson's analytical model and FEWA numerical model were in good agreement, and the anisotropic ratio of hydraulic conductivity was evaluated as a physical factor which influences the behaviour of the induced infiltration rate curve. The methods and results of the paper might Icad to improve the understanding of the induced infiltration phenomenon and can be applied to the planning and disign of pumping well and the optimal determination of the induced infiltration rate and pumping rate for water quality management of the water supply wells.

  • PDF

Assessment of RELAP5/MOD2 Code using Loss of Offsite Power Transient of Kori Unit 1 (고리 1호기 외부 전원 상실사고에 의한 RELAP5/MOD2코드 모델 평가)

  • Chung, Bub-Dong;Kim, Hho-Jung;Lee, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 1990
  • The Loss of Offsite Power Transient at 77.5% power which occurred on June 9, 1981 at the Kori Unit 1 PWR (Pressurized Water Reactor) is simulated using the RELAP5/MOD2 system thermal-hydraulics computer code. Major thermal-hydraulic parameters are compared with the available plant data. The comparison of the analysis results with the plant data demonstrates that the RELAP5/MOD2 code has the capability to simulate the thermal-hydraulic behaviour of PWRs under accident conditions of this type with accuracy, except the pressurizer pressure and level. The pressurizer pressure increase is sensitive to the in surge now it is believed that the interracial heat transfer in a horizontal stratified flow regime may be estimated low and the compression effect due to insurge flow may be high. In the nodalization sensitivity study it is found that S/G noding with junctions between bypass plenum and steam dome is preferred to simulate the S/G water level decreasing and avoid the spurious level peak at trubine trip.

  • PDF

Permeability Reduction of Geotextile Filters Induced by Clogging (폐색으로 인한 부직포의 투수능 저하 현상)

  • ;;Lakshmi N. Reddi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

A new method for in line electrokinetic characterization of cakes

  • Lanteri, Yannick;Ballout, Wael;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony;Sauvade, Patrick
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.157-174
    • /
    • 2013
  • The present study is devoted to the validation of a new method for in line electrokinetic characterisation of deposits on membrane surfaces. This method is based upon simultaneous measurements of transversal streaming potential and permeates flux at constant pressure before and during the deposit formation. Dead-end filtration experiments were conducted with negative flat membranes forming a narrow slit channel, negative hollow fiber membranes and mono-dispersed suspensions of (negatively charged) polystyrene latex and (positively charged) melamine particles at various concentrations. It was observed that the overall streaming potential coefficient increased in absolute value with the deposited latex quantity, whereas it decreased and changed of sign during the filtration of melamine suspensions. By considering a resistance-in-series model, the streaming potential coefficient of the single deposit ($SP_d$) was deduced from the electrokinetic and hydraulic measurements. The independence of $SP_d$ with respect to growth kinetics validates the measurement method and the reliability of the proposed procedure for calculating $SP_d$. It was found that $SP_d$ levelled off much more quickly when filtration was performed through the slit channel. This different behaviour could result from a non-uniform distribution of the deposit thickness along the membrane given that the position of measuring electrodes is different between the two cells.

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.

Design and Implementation of The Feedback Fuzzy Controller (궤환 퍼지제어기 설계와 구현)

  • 이상윤;신위재
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.401-408
    • /
    • 2000
  • In this paper, we proposed a fuzzy controller that founded by the general feedback control with the new adjustment method when it's tuning. The general feedback controller is operated that supply to the plant making the control input multiplying the appropriate gain of controller on the error between the output of the plant and the reference, But proposed feedback fuzzy controller consist of three loops. The inner loop consists of plant and an ordinary feedback controller. The fuzzy inference of controller performed by the outer loops, which is composed of a fuzzy modeling and inference. We can observe that the output of control system converges toward the reference. Also, the behaviour of feedback fuzzy system is converged from the transient. That is, we verified that designed fuzzy controllers was adapted effectively through the experiments in the hydraulic motor system using floating point DSP processor.

  • PDF