• Title/Summary/Keyword: hydraulic actuator

Search Result 318, Processing Time 0.03 seconds

Development of the Pipe Construction Robot for Rehabilitation Work Process of the Water Pipe Lines (상수도 배관의 갱생 공정을 위한 배관 건설 로봇 개발)

  • Jeong, Myeong-Su;Lee, Jaeyoul;Hong, Sung-Ho;Jang, Minwoo;Shin, Dongho;Hahm, Jehun;Seo, Kap-Ho;Seo, Jin-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In this paper describes the research and development of a pipe robot for pipe rehabilitation construction of old water pipes. After the water supply pipe construction, the pipe is leaking, damaged, and aging due to corrosion. Eventually, resistance to the flow of water in lower supply efficiency and contaminated water such as rusty water, finally in various consumer complaints. In order to solve this problem, rehabilitation construction robot technology is required to secure the construction quality of pipe rehabilitation construction and restore the function of the initial construction period. The developed pipe rehabilitation construction robot required a hydraulic actuator for high traction and was equipped with a small hydraulic supply device. In addition, we have developed a hydraulic cylinder and a link system that supports the pipe inner diameter to develop a single pipe robot corresponding to 500 to 800mm pipe diameter. The analysis and experimental verification of the driving performance and unit function of the developed pipe reconstruction robot are explained, and the result of the integrated performance test of the pipe reconstruction robot at the water supply pipe network site is explained.

Geometrical Analysis on Parts of Load Limit Valve for Static Structural Test of Aerospace Flight Vehicles (항공우주 비행체 정적구조시험용 하중제한밸브 부품 형상 분석)

  • Shim, Jae-Yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.607-616
    • /
    • 2019
  • Free body diagram analysis is done for key parts of pilot stage of LLV (Load Limit Valve) which is used to protect overload for static structural test of aerospace flight vehicle. It is shown through the analysis that diameter ratio($D_2)^{ten}/D_2)^{comp}$) of two poppets in a pilot stage must be equal to piston area ratio($A_{comp}/A_{ten}$) of a hydraulic actuator for making a poppet open consistently at constant force applied by an actuator. The result of the analysis is verified by measuring geometries of the poppets in the four different LLVs which are corresponding to four actuators with different capacity and have been used after being imported in this laboratory. Results of "Adjuster resolution tests" with two different pilot stages show the max. deviation of Fi(actuator force in instant of opening poppet) from average Fi obtained for each turn of adjuster is 0.3KN and max. deviation of the Fi normalized by average Fi of each turn of adjuster is 3.7%. From the results, it is verified that the two pilot stages with same poppet diameter ratio make a poppet consistently open at Fis within ${\pm}3.7%$ deviation from the average Fi. The deviation is shown to be caused from frictional force of O-ring in the poppet. Additionally, design factors for poppet spring and adjuster, which are also key parts of the pilot stage, are distinguished and procedure for deciding the factors are also shown in this study.

Development of a Tractor Attached Round Bale Wrapper(I) -Analysis of wrapping process and development of operating system- (트랙터 견인형 원형 베일 랩퍼의 개발(I) -랩핑 작업공정 분석 및 작업 시스템의 개발-)

  • Park, K. K.;Kim, H. J,;Kim, C. S.;Kim, J. Y.;Kim, J. H.;Jang, C.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • One of the major obstructing factors against managing dairy farm in Korea has been a shortage of roughage supply, which resulted in excessive abuse of concentrate feed. In order to solve this problem, production of the wrap silage by the winter cereal forages raised in the fallow paddy field is strongly recommended in Korea. The main objective is to develop a tractor attached round bale wrapper which can process the silage by wrapping the round bales with thin plastic films. This is the first half of the study which is divided by two parts. In this first part, bale wrapping process was analyzed, and based on this results the followings were designed, developed and tested. 1. Bale wrapper which haying the maximum capacity of 1 ton bale with various functions such as loading, wrapping, discharging the round bales and supplying and cutting wrap films was designed. 2. An actuator and its hydraulic circuit of each process were developed and tested. 3. Also, the variations of hydraulic pressure and engine speed were investigated by operating bale wrapper developed. In this test, maximum pressure of the hydraulic circuit for the bale wrapping was 130 kg/㎠ when it raised the bale, which was quite below the relief pressure of 170 kg/㎠ of hydraulic circuit. In the engine speed test, speed drop was 20∼67 rpm, which meant that there was no over-load operation. Therefore, the experiment proved that developed hydraulic circuit and mechanism is stable in bale wrapping operation

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Life Prediction of Elastomeric U Seals in Hydraulic/Pneumatic Actuators Using NSWC Handbook (NSWC를 활용한 유공압 액추에이터 U 형 씰의 수명예측)

  • Shin, Jung Hun;Chang, Mu Seong;Kim, Sung Hyun;Jung, Dong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1379-1385
    • /
    • 2014
  • Even the rough prediction of the product test time before the lifetime test of mechanical component begins would be of use in estimating cost and deciding how to keep up with the test. The reliability predictions of mechanical components are difficult because failure or degradation mechanisms are complicated, and few plausible databases are available for lifetime prediction. Therefore, this study conducted lifetime predictions of elastomeric U seals that were respectively installed in a hydraulic actuator and a pneumatic actuator using lifetime models and a field database based on failure physics and an actual test database obtained from the NSWC handbook. To validate the results, the predicted failure rates were compared with the actual lifetime test results acquired in the lab durability tests. Finally, this study discussed an engineering procedure to determine the coefficients in the failure rate models and analyzed the sensitivity of each influential parameter on the seal lifetime.

Experimental Investigation on the Non-linearity of Nitrile Butadiene Rubber (Nitrile Butadiene Rubber의 비선형성에 대한 실험적 연구)

  • Yoo, Myung-Ho;Lee, Taek-Sung;Do, Je-Sung;Kwon, Jong-Ho
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • Hydraulic actuators are used widely for industrial machinery. The seal made from elastomer is used as a core part of the actuator, NBR(nitrile butadiene rubber) materials with high quality of oil resistance and abrasion resistance is used widely, requiring excellent characteristic of sealing. According to applied circumstances, the actuators for industrial machinery are used under different temperature situations. In this study, three different kinds of NBR, which is Hs70, 80, 90 are determined as one of hydraulic materials. An experimental investigation is performed to confirm the non-linearity under different temperature ($-10^{\circ}C,\;20^{\circ}C,\;80^{\circ}C,\;100^{\circ}C$) situation, material constants for finite element analysis and plastic deformation in accordance with Load-unload.

Determination of PID Coefficients for the Ascending and Descending System Using Proportional Valve of a Rice Transplanter

  • Siddique, Md. Abu Ayub;Kim, Wan-Soo;Baek, Seung-Yun;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Joo;Park, Jin-Kam
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • Purpose: This study was conducted to develop a linear Proportional-Integral-Derivative (PID) control algorithm for the ascending and descending system of a rice transplanter and to analyze its response characteristics. Methods: A hydraulic model using a single-acting actuator, proportional valve and a PID control algorithm were developed for the ascending and descending system. The PID coefficients are tuned using the Ziegler-Nichols (Z-N) method and the characteristics of unit step response are analyzed to select the PID coefficients at various pump speeds. Results: Results showed that the performance of the PID controller was superior in any condition. It was found that the highest settling time and maximum overshoot were less than 0.210 s and 5%, respectively at all pump speed. It was determined that the steady state errors were 0% in all the cases. The lowest overshoot and settling time were calculated to be nearly 2.56% and 0.205 s, respectively at the pump rated speed (2650 rpm). Conclusions: The results indicated that the developed PID control algorithm would be feasible for the ascending and descending system of a rice transplanter. Finally, it would be helpful to plant the seedlings uniformly and improve the performance of the rice transplanter.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.