• Title/Summary/Keyword: hydraulic actuator

Search Result 318, Processing Time 0.031 seconds

Design of Hydraulic cylinder for Kinetic Performance Test of Tilting Mechanism (틸팅 메커니즘 기구학적 성능평가를 위한 유압 실린더 설계)

  • Kim, Ho-Yeon;Nam, Jin-Wook;Lee, Joon-Hwan;Kim, Bong-Tak
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1124-1127
    • /
    • 2011
  • In this paper, kinematic performance of the tilting mechanism, hydraulic cylinder was designed for the evaluation. ESW GmbH is attached to the existing electric tilting actuator's performance based on the similar system, each operated by tilting the balance in order to effectively balance has been designed by an independent hydraulic system. In addition, the behavior of the hydraulic system for storing and analyzing information about UI (User Interface) was also included in the design.

  • PDF

Design and Implementation of 3DoF Manipulator with Cable-Hydraulic Driven Actuation for Cooperative Robot with High Output and Low Inertia (고출력 및 경량 협동로봇 위한 케이블-유압 구동 3자유도 매니퓰레이터 설계 및 구현)

  • Kim, Jungyeong;Kim, Jin Tak;Park, Sangshin;Han, Sangchul;Kim, Jinhyeon;Cho, Jungsan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.179-185
    • /
    • 2019
  • This paper presents cable-hydraulic driven 3DoF (Degree-of-Freedom) manipulator for cooperative robot with high output/low inertia and enhancing lager workspace of hydraulic manipulator. Hydraulic actuation could be solution to design more higher output manipulator than the one of electric motor actuation due to install actuation source and robot joint separated. In spite of this advantage, the conventional hydraulic driven manipulator using cylinder or vane actuator is not suitable for the candidate of cooperative robot because smaller workspace owing to small RoM (Range of Motion) hydraulic actuator. In this paper, we propose 3DoF manipulator with cable-hydraulic actuation which is more larger ratio of payload-to-weight than the one of conventional cooperative manipulator and larger workspace than the one of existing hydraulic driven manipulator. The performance of proposed manipulator was demonstrated by the experiments for confirming overall workspace task, high payload operation task under worst situation and comparing repeatability between developed manipulator and existed cooperative robots. The results of experiments showed that the appropriate performance of proposed manipulator for cooperative robot.

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Analysis of Surplus Flow in a Hydraulic System Applied to a Self-propelled Spinach Harvester (자주식 시금치 수확장치에 적용된 유압시스템의 잉여유량 분석)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2022
  • This study dealt with a self-propelled spinach harvester, which is capable of carrying out sequential harvesting work. This study aimed to find the cause of the harvester's occasional performance deterioration, which occurs in the process of simplifying the hydraulic circuit, using a multi-domain analysis model. The study was carried out in the following manner. First, a hydraulic system analysis model, which combines linear motion, rotary motion, hydrodynamic behavior, and an electrical signal, was developed through SimulationX software, specialized in multi-domain analysis. Second, a scenario for single behavior and coupled behavior was set out on an actuator basis. Third, the flow rate of the hydraulic system, which is not required for the movement of the actuator, was quantitatively analyzed. The results showed that a change in oil temperature was the cause of the harvester's occasional performance deterioration. And the higher the oil temperature, the more serious the performance deterioration, especially as the number of actuators operated simultaneously was small.

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Finite Element Analysis on the Sealing Mechanism of U-Cup Seals (U-컵 시일의 밀봉기구에 관한 유한요소해석)

  • 최준업;전인기;김희준;김청균
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.12-17
    • /
    • 1994
  • Minimum clearance between the U-cup seal groove of a piston and a cylinder bore to ensure against extrusion of the U-cup ring and leakage of working fluids is an important design parameter for a seal designer in hydraulic cylinder applications. Therefore, typical U-cup seal of a hydraulic actuator has been analyzed as a function of a sealing gap using the nonlinear FEM software MARC. In this study, the useful design data were presented as a function of the sealing gap and the sealed hydraulic pressure.