• Title/Summary/Keyword: hydration reaction model

Search Result 34, Processing Time 0.022 seconds

An Integrated System to Predict Early-Age Properties and Durability Performance of Concrete Structures

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.465-466
    • /
    • 2010
  • In this paper, an integrated system is proposed which can evaluate both the early-age properties and durability performance of concrete structures. This integrated system starts with a hydration model which considers both Portland cement hydration and chemical reactions of supplementary cementing materials (SCM). Based on the degree of hydration of cement and mineral admixtures, the amount of reaction products, the early age heat evolution, chemically bound water, porosity, the early age short-term mechanical behaviors, shrinkage and early-age creep are evaluated as a function of curing age and curing conditions. Furthermore, the durability aspect, such as carbonation of blended concrete and chloride attack, are evaluated considering both the material properties and surrounding environments. The prediction results are verified through experimental results.

  • PDF

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Effects of the Reaction Degree of Ground Granulated Blast Furnace Slag on the Properties of Cement Paste (고로슬래그 미분말의 반응도가 시멘트 페이스트의 물성에 미치는 영향에 관한 연구)

  • Kim, Dong-Yeon;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.723-730
    • /
    • 2014
  • The usage of Ground Granulated Blast Furnance Slag (GGBFS) has been increased recently. Studies on the cement hydration model incorporating GGBFS as well as the properties of cement paste done with GGBFS such as compressive strength, hydration products and hydration heat have been the subjects of many researches. However, studies on the reaction degree of GGBFS that affect the properties of cement paste incorporating GGBFS are lacking globally and specially in Korea. Thus, in this study, the reaction degree of GGBFS using the method if selective dissolution, compressive strength, the amount of chemical bound water and $Ca(OH)_2$ were measured and analysed in accordance with water-binder ratio, replacement ratio of GGBFS, and curing temperature. The results show that the reaction degree of GGBFS, the amount of chemical bound water and $Ca(OH)_2$ in cement paste with GGBFS were higher in conditions where the replacement ratio of GGBFS was low and both water-binder ratio and curing temperature were high. Finally, the reaction degree of GGBFS was achieved at a value between 0.3~0.4.

Modeling of Setting Behavior in Fresh Concrete considering Microstructure Formation

  • Cho, Ho-Jin;Song, Ha-Won;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.490-493
    • /
    • 2004
  • In the analysis of early-age concrete behavior, the fresh concrete is considered as a structural element immediately after mixing. But for the activation of real structural behavior in the fresh concrete, the so-called setting time is necessary a few hours after the beginning of hydration reaction. In this paper, analysis on the setting behavior is carried out by proposing an analytical model based on the percolation theory as well as the expanding cluster model by defining the setting as a microstructure formation in fresh concrete. An experimental investigation is also carried out to show the influences of curing temperature, mineral admixtures and chemical admixture on setting behavior of fresh concrete. Finally, the analytical results using proposed model are compared with the experimental results for the sake of verification.

  • PDF

Prediction Model for the Change of Temperature and R.H. inside Reinforced Concrete (철근콘크리트 내부 온습도 경시변화 추정 모델 구축)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.83-84
    • /
    • 2016
  • Surplus water inside a concrete other than moisture that is used for hydration of the cement affects the physical properties of the concrete (modulus of elasticity, compressive strength, drying shrinkage, and creep) by drying. Changes in temperature and humidity inside a concrete has correlation with the movement speed and reaction rate of deterioration factors such as carbon dioxide and chloride ions. In this study, comparison was performed between temperature and relative humidity inside the concrete and meteorological data for exposure environment through measurement at the site for two years. Surface temperature of the concrete (depth 1cm) was measured higher by 6℃ during the summers, while it was measured lower by 2℃ during the winters due to solar radiation, wind, and radiation cooling. As for relative humidity, change was large in the depth of 1cm, while more than 85% was maintained in the depth of 10cm.

  • PDF

Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment (고온환경 조건하에서 고로슬래그를 사용한 콘크리트의 압축강도 증진 해석)

  • Han, Min-Cheol;Shin, Byung-Cheol
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.347-355
    • /
    • 2007
  • In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

Analysis on a Dynamic Model with One Dimension in Water Transportation of PEM Fuel Cell (PEM연료전지의 수분전달에 있어서 1차원 해석을 수행한 동적모델에 관한 연구)

  • Bakhtiar, Agung;Hong, Boo-Pyo;You, Jin-Kwang;Kim, Young-Bok;Yoon, Jung-In;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.118-123
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell performance. Maintenance of proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

Degradation of the Chlorothalonil by Functional Zeolite-KCIO3 Complex (기능성 Zeolite-KCIO3 복합체에 의한 Chlorothalonil의 분해)

  • Choi, Choong-Lyeal;Park, Man;Lee, Dong-Hoon;Lee, Byung-Mook;Rhee, In-Koo;Choi, Jyung;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • Salt occlusion in Zeolite is a unique phenomenon that takes place only when the salt size is similar to the window size of host zeolite. $KCIO_3$-occluded Zeolite, as an environment-friendly oxidant, has a high potential for effective removal of various organic pollutants. This study was carried to investigate the characteristics and the removal kinetics of fungicide chlorothalonil by zeolite-$KCIO_3$ complex. About 10% of $KCIO_3$ was occluded in zeolite pores synthesized by salt-thermal method from fly ash, although the occlusion amount was relatively less compared to that of nitrate salts. By occlusion with $KCIO_3$, no remarkable changes were found in X-ray diffraction patterns of cancrinite, whereas some decrease of overall peak intensities was found with those of sodalite. Different releasing kinetics of $CIO_3^-$ ion were observed in distilled water and soil solution from zeolite-$KCIO_3$ complex. Two reactions, hydration and diffusion, seem to be related with the release of $KCIO_3$. Therefore, the release isotherm of $CIO_3^-$ ion well fitted to the power function model which indicate the release was made by hydration and diffusion. The removal of chlorothalonil by zeolite and $KCIO_3$ reached at reaction equilibrium within 6 hours by 18% and 47% respectively. However, the chlorothalonil removal by the zeolite-$KCIO_3$ complex increased slowly and steadily up to 92% in 96 hours. These findings suggested that zeolite-$KCIO_3$ complex could be applied for effective removal of organic contaminants in the soil and aqueous environment.