• Title/Summary/Keyword: hydration react

Search Result 16, Processing Time 0.018 seconds

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O) (염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Cho, Kye Hong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.399-409
    • /
    • 2021
  • In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.

Hydration Properties of Cement Matrix using Electrolysis Alkaline Aqueous and Ground Granulated Blast Furnace Slag (전기분해 알칼리 수 및 고로슬래그 미분말 혼입 시멘트 경화체의 수화 특성)

  • Jung, Yoong-Hoon;Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 2021
  • Cement has been used as a main material in the modern construction industry. However, it has been pointed out as a main cause of global warming due to carbon dioxide generated during manufactured. Recently, research that replacing cement substitute to industrial by-products such as Blast Furnace Slag which is by-producted in steelworks. When Blast Furnace Slag is used as a cement substitute, it shows a problem of lower initial strength, which is caused by glassy membrane on the particle surface. In this study, we used Electrolysis Alkaline Aqueous to improve the usability and problem of lower initial strength. As a result of the experiment, cement matrix using Blast Furnace Slag and Alkaline Aqueous showed initial strength and hydrate product were developed than that using general mixing water. Also, as a result of porosity analysis, It was confirmed that cement matrix using Alkaline Aqueous and Blast Furnace Slag has a tighter structure in internal porosity and porosity distribution than using general mixing water.

Dyeing of Silk Fabric with Aqueous Extract of Cassia tora L. Seed - focusing on the mordanting and dyeing mechanisms - (결명자 색소 추출액에 의한 견직물 염색 -매염 및 염착 mechanism을 중심으로-)

  • Dho Seong Kook;Kang In A
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.10-18
    • /
    • 2005
  • Silk fabrics mordanted with $Fe^{2+},\;Ni^{2+},\;and\;Cu^{2+}$ were dyed with the aqueous extract of Cassia tora L. seed which was known to include water soluble colorant kaempferol, one of flavonol compounds. Kaempferol can react with free radicals and chelate transition metal ions, which is thought to catalyze processes leading to the appearance of free radicals and have antioxidant activity. In relation to the coordinating and chelating mechanism of the ions with the silk protein and kaempferol, reasonable conclusions should be made on the colorant uptake and the water fastness of the fabric. The amount of the colorant on the fabric was in the order of $Fe^{2+}>Ni^{2+}>Cu^{2+}$. In case of dyeing through coordinaiton bonds between transition metal ions and silk protein and colorants, it was thought that the ions with the smaller secondary hydration shell, the higher preference to the atoms of the ligand coordinated, and the suitable bonding stability for the substitution of primarily hydrated water molecules for colorants led to the higher colorant uptake. The water fastnsess of the fabric was in the order of $Fe^{2+}>Cu^{2+}>Ni^{2+}$. It should be reasonable to choose transition metal ions with weak and strong tendency to the ionic and the coordination bond, respectively, to the carboxylate anion of the silk protein. Although further research needs to be done, the conclusions above may be generally applied to the natural dyeing through the coordination bond mechanism between transition metal ions and colorants and substrates.

A Characteristics of Fly-ash Concrete Incorporating Tablet-shaped Accelerators in Cold Weather (한중 환경에서 정제된 급결제를 혼입한 플라이애시 콘크리트의 특성)

  • Lee, Yong-Soo;Ryou, Jae-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • Although the accelerators are used at the early stage to control setting-time and strength of concrete when cold-weather concrete is utilized, no security of workability occurs because the early hydration makes them react rapidly. Therefore, the tablet used in previous study is applied in this study. In particular, because a small amount of fly-ash being replaced in cold weather concrete of domestic, fly-ash concrete incorporating the tablet is discussed in workability by elapsed time, early strength to ensure the development of adequate strength, and freezing-thawing resistance. As a result, both 0.5 and 1.0% tablets were found to be superior. Thus, it was verified in cold weather concrete incorporating fly-ash that workability can be secured, as well as the development of early strength to prevent early frost.

Evaluating the Durability of Concrete Combined with Ground Granulated Blast Furnace Slag using Electrolysis Alkaline Aqueous as Mixing Water (전기분해 알칼리수를 배합수로 사용한 고로슬래그 미분말 혼입 콘크리트의 내구성)

  • Jeong, Su-Mi;Kim, Ju-Sung;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This research aimed to enhance the initial strength of concrete that is mixed with ground granulated blast furnace slag, as well as to fortify its resistance to carbonation and chloride ion permeation. To achieve this, alkaline aqueous, produced through the electrolysis of potassium carbonate, was employed as the mixing water in the preparation of concrete. To substantiate the increment in initial strength, compressive strength measurements of the concrete were executed. Additionally, an accelerated carbonation test and a chloride ion permeation resistance test were undertaken. The results confirmed that the initial strength of the concrete, which utilized electrolysis alkaline aqueous as mixing water, exhibited an improvement in comparison to concrete mixed with conventional water. It was also verified that both carbonation resistance and chloride ion permeation resistance showed enhancements.

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.