• Title/Summary/Keyword: hydration products

Search Result 240, Processing Time 0.023 seconds

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Study on the Quality Characteristics of High-strength Concrete Using LCD Industrial Waste (LCD 산업부산물을 이용한 고강도 콘크리트의 품질 특성에 관한 연구)

  • Kim, Dong-Jin;Park, Seung-Hee;Choi, Sung;Han, Yang-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.650-657
    • /
    • 2021
  • Alkali activators that stimulate mineral compounds are expensive materials, but in order to replace industrial products of high alkali in gredien ts, both product an d econ omic feasibility must be satisfied. In this study, alkali in dustrial waste(LW) from the LCD man ufacturin g process were used for the purpose of alkali active reaction of GGBFS for high stren gth concrete over 50MPa. Concrete mixed with LW had reduced workability, but it had the characteristic of increasing compressive strength. Analysis using ACI 209 Compressive Strength Model Equation was made to compare the changes in strength coefficients according to LW mixing. The durability test of concrete, such as Chloride Penetration Resistance and carbonation resistance, also showed excellent performance. In the Adiabatic temperature rise test results, the concrete mixed with LW had the effect of accelerating the initial hydration heat. However, the final Adiabatic temperature rise was not significantly affected by the mixing of LW.

Development of Eco-friendly Cement using Reverse Osmosis Brine Water and Metakaolin (역삼투압 농축수와 메타카올린을 사용한 친환경 시멘트의 개발)

  • Kim, Taewan;Han, Ki-Bong;Kim, Do-Hyung;Seo, Ki-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.216-222
    • /
    • 2021
  • This is an experiment to complement new ways of using concentrated water discharged from the seawater desalination plant. In this study, metakaolin, which has excellent chloride ion immobilization effect, was used as the main binder, and 10% and 20% of calcium oxide were substituted with the activator. In addition, tap-water(TW) and reverse osmosis brine water(RW) were used as mixed water. As a result of the experiment, the mixture using RW showed higher compressive strength than TW. It also showed low water absorption and high density. In the mixture using RW as mixed water, a hydration reaction substance called Friedel's salt could be observed. Considering the corrosion problem of steel, RW is considered to be applicable to products such as non-reinforced concrete, brick, and curb stone. Through this study, it is thought that it is meaningful to propose a new application method other than the ocean release of RW.

Compressive Strength and Water Contact Angle Properties of Cement Mortar by Type of Water Repellent (발수제종류별 잔골재 입도에 따른 시멘트 모르타르의 강도 및 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Suh, Jeong-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.529-538
    • /
    • 2021
  • In this study, the compressive strength and water contact angle were measured before and after surface abrasion of mortar specimens prepared by mixing two types of water repellents and two types of sands. In addition, the hydration products and chemical bonding of cement mortar by repellent were examined using X-ray diffraction(XRD), thermogravimetry-differential thermal analysis(TG-DTA), and Fourier-transform infrared spectroscopy(FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the compressive strength of the cement mortar with water repellent added was decreased compared to that of the plain cement mortar, and that of the oligomeric system was higher than that of the monomeric system. We further found that the contact angle of mortar with water repellent added was increased compared to that of the plain cement mortar, and that of the oligomeric system was increased compared to that of the monomer.

The study of strength behaviour of zeolite in cemented paste backfill

  • Eker, Hasan;Bascetin, Atac
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.421-434
    • /
    • 2022
  • In the present study, reference samples were prepared using ore preparation facility tailings taken from the copper mine (Kure, Kastamonu), Portland cement (PC) in certain proportions (3 wt%, 5 wt%, 7 wt%, 9wt% and 11 wt%), and water. Then natural zeolite taken from the Bigadic Region was mixed in certain proportions (10 wt%, 20 wt%, 30 wt% and 40 wt%) for each cement ratio, instead of the PC, to prepare zeolite-substituted CPB samples. Thus, the effect of using Zeolite instead of PC on CPB's strength was investigated. The obtained CPB samples were kept in the curing cabinet at a temperature of 25℃ and at least 80% humidity, and they were subjected to the Uniaxial Compressive Strength (UCS) test at the end of the curing periods of 3, 7, 14, 28, 56, and 90 days. Except for the 3 wt% cement ratio, zeolite substitution was observed to increase the compressive strength in all mixtures. Also, the liquefaction risk limit for paste backfill was achieved for all mixtures, and the desired strength limit value (0.7 MPa) was achieved for all mixtures with 28 days of curing time and 7 wt%, 9 wt%, 11 wt% cement ratios and 5% cement - 10% zeolite substituted mixture. Moreover, the limit value (4 MPa) required for use as roof support was obtained only for mixtures with 11% cement - 10% and 20% zeolite content. Generally, zeolite substitution seems to be more effective in early strength (up to 28th day). It has been determined that the long-term strength losses of zeolite-substituted paste backfill mixtures were caused by the reaction of sulfate and hydration products to form secondary gypsum, ettringite, and iron sulfate.

Isoflavone Contents in Some Varieties of Soybean and on Processing Conditions (콩의 종류와 가공 조건에 따른 isoflavone의 함량 변화)

  • 문보경;전기숙;황인경
    • Korean journal of food and cookery science
    • /
    • v.12 no.4
    • /
    • pp.527-534
    • /
    • 1996
  • enistein (G), and daidzein (D), the major isoflavones, were analyzed in 14 varieties of Korean soybean and various processed soybean products by using high performance liquid chromatography. Isoflavone contents (G+D) were greatly variable among varieties ranged from 308.2 $\mu\textrm{g}$/g to 1,134.2 $\mu\textrm{g}$/g and highest in Danyopkong and Jinpumkong. Among hypocotyl, cotyledon and hull of soybean the concentration of the isoflavone (G+D) in the hypocotyl was highest ranged from 2,971.7 $\mu\textrm{g}$/g to 5,704.9 $\mu\textrm{g}$/g. The distributions of genistein and daidzein were also different in hypocotyl, cotyledon and hull. Higher ratio of daidzein to genistein (D/G) was found in the hypocotyl (4-12) compared to cotyledon and hull (0.1-4). Isoflavone (G+D) contents of soymilks (Sinpaldal#2, Eunhakong) prepared at 16 hour hydration were decreased to 1.1-1.2 times compared with that at 8 hour hydration. Commercial soymilks contained much lower isoflavone (G+D) than laboratory soymilks. Soybean curd (Eunhakong) prepared with MgCl$_2$ showed higher isoflavone (G+D) contents than that with CaSO$_4$. But these values of two different soybean curds made at laboratory were similar to those of 3 commercial curds. The concentration of the isoflavones in soybean sprout separated with 3 parts revealed highest in the head and lowest in the stem. Compared with non-fermented soybean foods the fermented soybean produfts, Kochujang and soybean paste, Duen Jang, showed very low contents of isoflavone (G+D),2.8-3.0 $\mu\textrm{g}$/g, 35.9-63.6 $\mu\textrm{g}$/grespectively.

  • PDF

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water (해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

Evaluating the Efficacy of Whitening Products by Using Luminescence Measurement and Revealing Correlation between Luminescence and Other Parameters (투명감 측정을 통한 제형의 미백 효능 평가와 투명감에 관여하는 요소들에 대한 분석)

  • Jeong, Choon-Bok;Kim, Han-Kon;Nam, Gae-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2010
  • Until now, evaluating the efficacy of brightening mainly depends on total reflective light measurement. For example, SHV (Saturation, Hue, Value), $L^*$ $a^*$ $b^*$ (CIELAB color space system) color space system was used and lightness and saturation changes were chosen as major parameters for evaluating brightening effect. However, those parameters were calculated from total reflective light on the skin and it is hard to evaluate perceptive efficacy such as luminescence, and glossy. In this research, we applied new method for estimating change of luminescence of skin by using 'Lumiscan' which uses polarized light for detecting surface and inside reflective light independently. We also tested 15 different parameters for finding correlations between luminescence and those parameters. As a results, our 2 different brightening products showed 5 ~ 9 % increase of luminescence at 4 and 8 weeks. And we also found that skin roughness (-28 %), melanin index (-17 %), redness (-7 %), hydration (15 %), and lightness (6 %) were related to luminescence of skin.

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.