• 제목/요약/키워드: hydration energy

검색결과 184건 처리시간 0.031초

Free Energy and Hydration Free Energy of N-acetyl-N'-methylalaninamide

  • Young Kee Kang;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.495-499
    • /
    • 1991
  • The changes in the free energy and hydration free energy of N-acetyl-N'-methylalaninamide in the unhydrated and hydrated states were calculated with ECEPP/2 and the hydration shell model. The configurational entropy change of each conformation in both states were computed by a harmonic method. To understand the hydration structure of each hydrated conformation, the hydration-shell coordination numbers of functional. groups of the molecule were estimated from water-accessible volumes, and the contributions of water-accessible volume and polarization of each group to the hydration free energy were analyzed. The results show a reasonable agreement with those of recent theoretical studies and experiments.

Conformational Studies of Sulfonylurea Herbicides : Bensulfuron Methyl and Metsulfuron Methyl

  • Young Kee Kang;Dae Whang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권2호
    • /
    • pp.144-149
    • /
    • 1990
  • Conformational free energy calculations using an empirical potential function (ECEPP/2) and the hydration shell model were carried out on the sulfonylurea herbicides of bensulfuron methyl (Londax) and metsulfuron methyl (Ally). The conformational energy was minimized from starting conformations which included possible combinations of torsion angles in the molecule. The conformational entropy of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecule in aqueous solution, the hydration free energy of each group was calculated and compared each other. It was found that the low-free-energy conformations of two molecules in aqueous solution prefer the overall folded structure, in which an interaction between the carbonyl group of ester in aryl ring and the first amido group of urea bridge plays an important role. From the analysis of total free energy, the hydration and conformational entropy are known to be essential in stabilizing low-free-energy conformations of Londax, whereas the conformational energy is proved to be a major contribution to the total free energy of low-free-energy conformations of Ally.

Free Energy of Ion Hydration

  • Kim, Hag-Sung;Chung, Jong-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권2호
    • /
    • pp.220-225
    • /
    • 1993
  • The influence of temperature and pressure on the free energy of the ion hydration has been considered. The ion radii measured by conductometric method and the saturated dielectric constant cited from other works were used to calculate the free energy in the hydration shell. The Born equation was modified in order to fit in our model. In our model, the environment of ion consists of three regions. The innermost one is the hydration shell in which water is immobilized and electrostricted, the middle one is the one which contains less ordered waters than the bulk medium, and the outermost one is the bulk water which is under the influence of the electric field of ion. Our results for the free energy of ion hydration were compared with those of other attempts. Especially, ${\Delta}$G$_{hyd}$ of $Li^+$ ion is considerably too negative in this study at given temperature, comparing with those of other attempts. But ${\Delta}$G$_{hyd}$ of other ions coincides with each other.

Conformational Analysis of Some Antibacterial Agent 4-Aminodiphenyl Sulfones

  • Lee, Sung-Hee;Chung, Uoo-Tae;Kang, Young-Kee
    • Archives of Pharmacal Research
    • /
    • 제13권1호
    • /
    • pp.43-50
    • /
    • 1990
  • Conformational free energy calculations using an empirical potential function (ECEPP/2) and hydration shell model were carried out on the four-4-aminodiphenyl sulfone analogues of 4, 4'-diamino-2' methyldiphenyl sulfone, 4, 2', 4-triaminodiphenyl sulfone, 4, 4'-diaminodiphenyl sulfone, and 4-aminodiphenyl sulfone as antibacterial agents on Mycobacterium lufu. The conformational energy was minimized from starting conformations which included possible combinations of torsion angles in the molecule. The conformational entropy change of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecule in aqueous solution, the contributions of water-accessible volume and the hydration free energy of each group or atom in the lowest-free-energy conformation was calculated and compared each other. From comparison of the computed lowest-free-energy conformations of four analogues with their antibacterial activities, it is known that the conformation and the hydrophobicity of sulfonyl group and its adjacent carbon atom in each compound are the essential factors to show the strong antibacterial activity.

  • PDF

Sulfonylurea 유도체들의 구조분석 : Acetohexamide와 Tolazamide (Conformational Analysis of Sulfonylureas : Acetohexamide and Tolazamide)

  • 정우태;강기롱;이성희
    • 약학회지
    • /
    • 제39권3호
    • /
    • pp.329-336
    • /
    • 1995
  • Conformational free energy calculations using an empirical potential function and a hydration shell model(program CONBIO) were carried out on hypoglycemic agent acetohexamide and tolazamide in the unhydrated and hydrated states. The initial geometry of sulfonylureas was obtained from X-ray crystallographieal data and homologous molecular fragments. In both states, the feasible conformations were obtained from the calculations of conformational energy, conformational entropy, and hydration free energy by varying all the torsion angles of the molecules. From the calculation results, it is known that the conformations] entropy is the major contribution to stabflize the low-free-energy conformations of two sulfonylureas in both states. But, in hydrated state, the hydration does not directly affect each conformations. The intramolecular hydrogen bonding of sulfonylurea hydrogen and 7-membered nitrogen appeared to the conformations of tolazamide in both states. It is thought that the hydrogen bonding decrease steric hindrance on the receptor binding direction. The substitution of alicyclic or N-heterocyclic ring than that of carbons chain of urea moiety may be properly interaction between sulfonylureas and the putative pancreatic receptor.

  • PDF

Collagen의 수화에 대한 이론적 연구 (Theoretical Study of the Hydration of Collagen)

  • 이종명;전무식
    • 대한화학회지
    • /
    • 제22권6호
    • /
    • pp.403-411
    • /
    • 1978
  • Collagen의 model compound인 poly(Gly-Pro-Pro)의 수화에 관해서 empirical ppotential energy 함수를 사용하여 이론적으로 연구하였다. 물 분자와 model compound 간의 상호작용 energy를 최소화시켜서 물 분자들의 위치와 결합 energies를 계산하였다. 다음에는 일차수화층에 물이 붙음으로써 생기는 안정화 energy를 계산하고, 전체 안정화에 기여하는 여러 energy components의 기여도에 대해 논의하였다.

  • PDF

Benzenesulfonyl 유도체들의 구조와 Staphylococcus aureus에 대한 항균력 (Conformation and Antibacterial Activity on Staphylococcus aureus of Some Benzenesulfonyl Analogues)

  • 김보수;이성희;정우태;강영기
    • 약학회지
    • /
    • 제33권6호
    • /
    • pp.350-360
    • /
    • 1989
  • The conformation and activity of the four benzenesulfonyl analogues of 4-aminobenzene-sulfonamide, 4-aminobenzenesulfonic acid, 4-methylbenzenesulfonamide, and 4-methylbenzenesulfonic acid with antibacterial activity on Staphylococcus aureus were studied using an empirical potential function (ECEPP/2) and the hydration shell model. The conformational energies were minimized from the starting conformations which included possible combinations of torsion angles in each molecule. To understand the hydration effect on the conformation of the molecule in aqueous solution, the hydration free energy of each group was calculated and compared each other. The conformational entropies of low-free-energy coformation of benzenesulfonly analogues were computed by a harmonic approximation. From the correlation of lowest-free-energy conformation of each compound and its antibacterial activity, it was found that the hydration of sulfonyl groups and the substituents are the decisive factors to show antibacterial activities.

  • PDF

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.

Mechanical Properties of Cement Material for Energy-Foundation (EF) Structures

  • Park, Yong-Boo;Choi, Hang-Seok;Sohn, Jeong-Rak;Sim, Young-Jong;Lee, Chul-Ho
    • 토지주택연구
    • /
    • 제3권1호
    • /
    • pp.83-88
    • /
    • 2012
  • In this study, physical characteristics of cement and/or concrete materials that are typically used for energy-foundation (EF) structures have been studied. The thermal conductivity and structural integrity of the cement-based materials were examined, which are commonly encountered in backfilling a vertical ground heat exchangers, cast-in-place concrete piles and concrete lining in tunnel. For this purpose the thermal conductivity and unconfined compression strength of cement-based materials with various curing conditions were experimentally estimated and compared. Hydration heat generated from massive concrete in the cast-in-place concrete energy pile was observed for 4 weeks to estimate its dissipation time in the underground. The hydration heat may mask the in-situ thermal response test (TRT) result performed in the cast-in-place concrete energy pile. It is concluded that at least two weeks are needed to dissipate the hydration heat in this case. In addition, a series of numerical analysis was performed to compare the effect of thermal property of the concrete material on the cast-in-place pile.

Hydration Behaviors of Portland Cement with Different Lithologic Stone Powders

  • Xiong, Zuqiang;Wang, Peng;Wang, Yuli
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.55-60
    • /
    • 2015
  • In this study, influence of different stone powders (SP), including limestone powders (LP), quartzite powders (QP), and granitic powders (GP), on the hydration behaviors of portland cement, for example, setting time, hydration heat, and hydration products, were discussed. The initial and the final setting time both shorten when the content of LP is 5 %, however, they are slightly delayed by the other two SPs. The LP has no obvious influence on the arrival time of the first peak in the exothermal curves, and it makes the peak value decrease; the other two SPs postpone the appearance of the first peak, and they also make the peak value decrease. For the second peak, LP shifts the peak position to the left, QP has no effect on this peak position, and GP makes the appearance of this peak delayed by 143 min. Similarly, three kinds of SPs have different influence on the hydration products of portland cement. The LP precipitates the formation of hydrated calcium carbo aluminate, the QP the formation of hydrated garnet, and the GP makes the amount of Tobermorite increase.