Conformational Analysis of Sulfonylureas : Acetohexamide and Tolazamide

Sulfonylurea 유도체들의 구조분석 : Acetohexamide와 Tolazamide

  • Published : 1995.06.01

Abstract

Conformational free energy calculations using an empirical potential function and a hydration shell model(program CONBIO) were carried out on hypoglycemic agent acetohexamide and tolazamide in the unhydrated and hydrated states. The initial geometry of sulfonylureas was obtained from X-ray crystallographieal data and homologous molecular fragments. In both states, the feasible conformations were obtained from the calculations of conformational energy, conformational entropy, and hydration free energy by varying all the torsion angles of the molecules. From the calculation results, it is known that the conformations] entropy is the major contribution to stabflize the low-free-energy conformations of two sulfonylureas in both states. But, in hydrated state, the hydration does not directly affect each conformations. The intramolecular hydrogen bonding of sulfonylurea hydrogen and 7-membered nitrogen appeared to the conformations of tolazamide in both states. It is thought that the hydrogen bonding decrease steric hindrance on the receptor binding direction. The substitution of alicyclic or N-heterocyclic ring than that of carbons chain of urea moiety may be properly interaction between sulfonylureas and the putative pancreatic receptor.

Keywords

References

  1. J. Med. Chem. v.28 no.9 Computer-assisted drug design Hopfinger,A.J.
  2. J. Med. Chem. v.33 no.3 Molecular modeling software and methods for medicinal chemistry Cohen,N.C.;Blaney,J.M.;Humblet,C.;Gund,P.;Barry,D.C.
  3. Korean Biochem. News v.10 no.1 Molecular modeling and drug design Kang,Y.K.
  4. Pharmaceutical Research v.10 no.4 Strategies for indirect computeraided drug design Loew,G.H.;Villar,H.O.;Alkorta,I.
  5. Principles of Medicinal Chemistry Foye,W.O.(ed.)
  6. The Pharmaceutical Basis of Therapeutics Gilman,A.G.;Goodman,L.S.;Rall,T.W.;Murad,F.
  7. J. Biol. Chem. v.262 no.6 Increased cytosolic calcium Nelson,T.Y.;Gaines,K.L.;Rajan,A.S.;Berg,M.;Boyd,A.E.
  8. J. Med. Chem. v.27 Receptor binding sites of hypoglycemic sulfonylureas and related [(Acylamino)alkyl]benzoic acids Brown,G.R.;Foubister,A.J.
  9. Arzneim. Forsch. (Drug Res.) v.24 Isoxazolcarboxamidoalkylbenzolsulfonylharnstoffe, -semicarbazide und -aminopyrimidine sowie damit verwandte verbindungen und ihre blutzuckersenkende wirkung Plumpe,V.H.;Horstmann,H.;Plus,W.
  10. J. Med. Chem. v.17 no.7 Blood glucose lowering sulfonamides with asymmetric carbon actoms. 1 Rufer,C.;Biere,H.;Ahrens,H.;Loge,O.;Schroder,E.
  11. J. Med. Chem. v.17 no.7 Blood glucose lowering sulfonamides with asymmetric carbon actoms. 2 Biere,H.;Rufer,C.;Ahrens,H.;Loge,O.;Schroder,E.
  12. J. Med. Chem. v.22 no.6 Blood glucose lowering sulfonamides with asymmetric carbon atoms 3. Related N-substitued carbamoylbenzoic acids Rufer,C.;Losert,W.
  13. Eur. J. Pharmacol. v.141 Stimulation of insulin release by benzoic acid derivatives related to the nonsulfonylurea moiety of glibenclamide structrual requirements and celluar mechanisms Henquin,J.C.;Garrino,M.G.;Nenquin,M.
  14. Yakhak Hoeji v.36 no.6 Conformational analysis of sulfonylureas Kang,K.L.;Lee,S.H.;Chung,U.T.
  15. The Chemical Society, Special Publication No. 11 and 18 Table of Interatomic Distances and Configuration in Molecules and Ions Shutton,L.E.(ed.)
  16. J. Pharm. Sci. v.75 no.6 Conformation of glyburide in the solid state and in solution Byrn,S.R.;Mckenzie,A.T.;Hassan,M.M.A.;Al-Badr,A.A.
  17. Arch. Pharm. Res. v.11 no.1 The crystal and molecular structure of 1-(hexahhydro-1H-azepin-1-yl)-3-(p-tolylsulfony)urea : Tolazamide Koo,C.H.;Suh,J.S.;Yeon,Y.H.;Watanabe,J.
  18. J. Phys. Chem. v.79 no.22 Energy parameters in polypeptides. Ⅶ. Geometric parameters, partial atomic charge, nonbonded interactions, hydrogen bond interactions and intrinsic torsional potentials for the naturally occuring amino acids Momany,F.A.;McGuire,R.F.;Burgess,A.W.;Scheraga,H.A.
  19. J. Phys. Chem. v.87 no.11 Energy parameters in polypeptides 9. Updating of geometrical parameters nonbonded interactions and hydrogen bond interactions for the naturally occuring amino acids Nemethy,G.;Pottle,M.S.;Scheraga,H.A.
  20. J. Phys. Chem.;erratum v.91;92 Free energies of hydration of solute molecules, 1. Improvement of the hydration shell model by exact computations of over-lapping volumes Kang,Y.K.;N'emethy,G.;Scheraga,H.A.
  21. J. Phys. Chem.;erratum v.91 Free energies of hydration of solute molecules 2. Application of the hydration shell model to nonionic organic molecules Kang,Y.K.;N'emethy,G.;Scheraga.H.A.
  22. J. Phys. Chem. v.91 Free energies of hydration of solute molecules 3. Application of the hydration shell model to charged organic molecules Kang,Y.K.;N'emethy,G.;Scheraga,H.A.
  23. J. Phys. Chem. v.92 Free energies of hydration of solute molecules 4. Revised treatment of the hydration shell model Kang,Y.K.;Gibson,K.D.;N'emethy,G.;Scheraga,H.A.
  24. J. Chem. Phys. v.51 no.11 Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules G'o,N.;Scheraga,H.A.
  25. Handbook of Mathematical Functions Abramowitz,M.(ed.);Stegun,I.A.(ed.)
  26. ACM Trans. Math. Software v.9 An adaptive nonlinear least-squares algolithm Gay,D.M.
  27. Macromolecules v.10 Conformational analysis of the twenty naturally occuring amino acid residues using ECEPP Zimmerman,S.S.;Pottle,M.S.;N.methy,G.;Scheraga,H.A.
  28. KRICT Research Report Conformational Analysis Program for Biological Molecules (CONBIO) Kang,Y.K.
  29. Macromolecules v.9 On the use of classical statistical mechanics in the treatment of polymer chain conformation